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To function in a biological setting, RNA binding proteins (RBPs) have to discriminate between alternative
binding sites in RNAs. This discrimination can occur in the ground state of an RNA-protein binding reac-
tion, in its transition state, or in both. The extent by which RBPs discriminate at these reaction states
defines RBP specificity landscapes. Here, we describe the HiTS-Kin and HiTS-EQ techniques, which com-
bine kinetic and equilibrium binding experiments with high throughput sequencing to quantitatively
assess substrate discrimination for large numbers of substrate variants at ground and transition states
of RNA-protein binding reactions. We discuss experimental design, practical considerations and data
analysis and outline how a combination of HiTS-Kin and HiTS-EQ allows the mapping of RBP specificity
landscapes.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

In typical eukaryotic cells thousands of different proteins inter-
act with tens of thousands of different RNAs [1–3]. Binding pat-
terns for a given RNA binding protein (RBP) are thought to arise
from its inherent binding preference for each potential RNA bind-
ing site and from a host of cellular parameters, including accessi-
bility of a given binding site, expression levels of RNAs and RBPs,
and interactions between the RBP and other proteins [2]. An
important first step towards understanding RBP-RNA binding pat-
terns is the delineation of inherent binding preferences of RBPs for
many or even all potential binding sites in RNA [4].

The extent to which an RBP discriminates between different
RNA substrates defines its inherent specificity [2]. Several experi-
mental approaches have been recently developed to assess inher-
ent RBP specificity in vitro [5–9]. Most of these techniques
successfully identify RNA sequence and structure signatures of
the most preferred substrate variants for the RBP in question.
Although powerful, such approaches are not well suited to explain
RBP binding to less preferred substrate variants, which are often
bound in the cell [2,3]. In addition, these techniques usually assess
protein-RNA binding under equilibrium conditions, and thus do
not account for binding kinetics, which are likely to be an impor-
tant determinant of cellular RNA protein interactions, given that
biological processes are generally kinetically controlled [2].

To determine the impact of kinetics on inherent RBP specifici-
ties, we developed an approach to simultaneously measure the
kinetics of protein binding to thousands of RNA sequence variants.
The technique, HiTS-Kin, combines high throughput sequencing
with experimental approaches and data analysis from classic enzy-
mology [10]. To account for the fact that inherent RBP specificity
can arise from discrimination between substrate variants in
ground and transition states (Fig. 1), we have recently expanded
the HiTS-Kin approach by a complementary technique, HiTS-EQ
[11]. The combination of the HiTS-Kin and HiTS-EQ approaches
allows assessment and, to a large extent, deconvolution of RBP dis-
crimination in ground and transition state [11]. The extent of sub-
strate discrimination at different reaction stages is called the RBP
specificity landscape [11].

Here, we outline the experimental approaches for the HiTS-Kin
and HiTS-Eq techniques and describe how the combination of
these approaches allows the mapping of RBP specificity landscapes.
We discuss experimental design, practical considerations and data
analysis. HiTS-Kin and HiTS-EQ approaches are widely applicable
for RNA binding proteins and RNA processing enzymes or enzyme
complexes, even in cell extracts and conceivably even in cells. The
techniques do not require specialized equipment or advanced com-
putational capacity. HiTS-Kin and HiTS-EQ readily translate con-
ventional techniques that measure binding or processing of
single RNA substrates into high throughput techniques that simul-
taneously characterize thousands of substrates.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymeth.2017.03.002&domain=pdf
http://dx.doi.org/10.1016/j.ymeth.2017.03.002
mailto:exj13@case.edu
http://dx.doi.org/10.1016/j.ymeth.2017.03.002
http://www.sciencedirect.com/science/journal/10462023
http://www.elsevier.com/locate/ymeth


io
n 

St
at

e

d 
St

at
e

qu
ilib

riu
m

ss
oc

ia
tio

n

D
is

so
ci

at
io

n

ct
 S

ta
te

Tr
an

si
t

G
ro

un G
° E

G
‡ 

A

G
‡ 

Pr
od

u

y

io
n

1
2

Substrate 
Variants

ee
 E

ne
rg

+ RNA-ProteinAs
so

ci
atFr

RNA Protein
Complex

oc
ia

tio
n

D
is

s

Fig. 1. Free energy landscape for a first-order, reversible RNA-protein binding
reaction. Substrate variants 1 and 2 denote two different substrates. The size marks
indicate for each substrate variant the free energy differences between ground and
product state (DG�Equilibrium), free energy differences between ground and transition
state (DGǂAssociation), and free energy differences between transition and product
state (DGǂDisssociation).

HiTS-Kin HiTS-EQ
(association kinetics) (equilibrium binding)

noitcaeRnoitcaeR

Isolate processed / unprocessed RNA Isolate bound / unbound RNA 

cDNA librarycDNA library

NGS Sequencing

Relative rate constant for Relative equilibrium binding constant

NGS Sequencing

Li f l tiLinear free energy relation

Specificity landscape

Fig. 3. Principal steps in the HiTS-Kin and HiTS-EQ procedures and their combi-
nation to establish a specificity landscape
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2. Rationale and experimental strategy

We initially developed HiTS-Kin and HiTS-EQ to interrogate the
specificity landscape of the C5 protein unit of E.coli RNase P (Fig. 2)
[11]. Bacterial RNase P is a ribonucleprotein enzyme that removes
50 leader sequences from pre-tRNAs [12]. The C5 protein binds the
leader sequences [13]. As noted, HiTS-Kin and HiTS-EQ are, how-
ever, applicable to any RNA-protein system, provided protein-
bound or processed RNA can be separated from unbound or unpro-
cessed RNA.

The core idea of the HiTS-Kin and HiTS-EQ approaches is the
simultaneous interrogation of all possible sequence variants in
and around the protein binding site (Fig. 2c). The goal of the exper-
iments is to characterize for each substrate variant the free ener-
gies associated with differences in ground, product, and
transition states (Fig. 1). These free energy differences for each sub-
strate variant constitutes the specificity landscape for a given RBP
[2,11]. A specificity landscape can be established by measuring for
all or most of the substrate variants either two of the (i) association
rate constants, (ii) the equilibrium binding constants, or (iii) the
dissociation rate constants (Fig. 1). The obtained specificity land-
scape indicates the extent to which the RBP discriminates between
different sequence variants at the RNA binding step, at the lifetime
of the RNA-protein complex, or through a combination of both
(Fig. 1). Rate and equilibrium constants are readily converted into
free energy values that can be correlated with free energy values
Fig. 2. Processing of pre-tRNA by RNase P. (a) pre-tRNA processing reaction by RNase P.
randomized region. The tRNA body is based on non-initiator pre-tRNAMet from E.coli [10
calculated from structures of RNA-protein complexes [14]. Models
that comprehensively explain structure function relationships that
govern inherent RBP specificity can thus be developed, analogous
to efforts modeling transcription factor specificity [15].

HiTS-Kin and HiTS-EQ reactions are set up and monitored like
reactions for individual substrates, except that a pool of substrate
variants is used. The substrate pool is subjected to RNA processing
or protein binding reactions. Processed (protein bound) or unpro-
cessed (not protein bound) RNA for each timepoint or RBP concen-
tration is isolated and converted into a cDNA library for Next
Generation Sequencing (NGS), which is then sequenced. Rate con-
stants (HiTS-Kin) and equilibrium binding constants (HiTS-EQ) are
determined, and linear free energy relationships between rate con-
stants and equilibrium binding constants are used to derive free
energy changes for the various reactions stages for each substrate
variant (Fig. 3).

3. Substrate design

Substrates for HiTS-Kin and HiTS-EQ experiments are generated
by incorporating a segment of randomized sequence into the RNA
construct at the protein binding site (Fig. 2c). This can be accom-
plished by in vitro transcription from a DNA template with a ran-
domized region, or by chemical synthesis of the RNA with a
randomized segment. The length of the randomized segment
determines the required number of sequencing reads in the exper-
iment and thus the cost of the experiment, which is dictated lar-
gely by sequencing expenses. The binding sites of most RBPs
range from 3 to 6 nucleotides [1,2]. Considering a sequencing
depths of roughly 103 reads for each sequence variant, 4 data
points per experiment and a replicate; a single lane in a Hi-Seq
(b) Structure of the RNase P holoenzyme [31]. (c) pre-tRNA substrate indicating the
]. Only the substrate segment with the randomized region is shown for clarity.



Table 1
The connection between number of randomized nucleotides, sequencing reads and experiments that can be analyzed in a single lane of a HiSeq 2500 flowcell. The calculation
assumes 300,000,000 reads per flowcell lane.

Randomized Nucleotides Sequence Variants Sequencing Depths(a) Data points (4)(b) Replicate Number of Experiments(c)

3 64 64,000 256,000 512,000 585
4 256 256,000 1,024,000 2,048,000 146
5 1024 1,024,000 4,096,000 8,192,000 36
6 4096 4,096,000 16,384,000 32,768,000 9
7 16,384 16,384,000 65,536,000 131,072,000 2
8 65,536 65,536,000 262,144,000 524,288,000 0.6

(a) Each individual sequence variant is sequenced 1000 times.
(b) Three sample collection points (timepoints or protein concentration) plus the zero point
(c) Experiments (including replicate) that can be sequenced in a single lane of a HiSeq 2500 flowcell (300,000,000 reads per lane).
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2500 flow cell (3�108 sequencing reads) thus allows multiplexing of
> 500 experiments for substrates with 3 randomized positions, or
roughly 9 experiments for substrates with 6 randomized positions
(Table 1).

It might prove informative to randomize not only the number of
nucleotides in the exact protein binding site, but also adjacent
nucleotides, because neighboring nucleotides can impact protein
binding [16]. It is possible to randomize RNA segments > 7 nucleo-
tides, but for such constructs not all sequence variants can be mon-
itored in a single sequencing lane. Another important
consideration for selecting the size of the randomized segment is
the formation of RNA structure that involves the randomized seg-
ment. Increasing the size of the randomized segment also increases
the number sequence variants with diminished binding site acces-
sibility, which is reflected in ground state effects for these sub-
strate variants [11]. Even transient RNA structures of 2 to 3
basepairs formed between the randomized region and surrounding
substrate can cause sizable ground state effects [2]. Since these
ground state effects can be RNA-construct-specific and thus irrele-
vant to the RBP specificity, it is advisable to keep randomization of
RNA segments beyond the protein binding site to a minimum. In
addition, it is useful to alter other substrate regions, if possible,
and repeat the measurements. Ground state effects caused by
RNA structure of the randomized region will vary with the sur-
rounding substrate sequences [11].
4. Reaction setup

4.1. HiTS-Kin reactions

A HiTS-Kin experiment aims to delineate rate constants for each
individual substrate. It is possible to measure protein-RNA binding,
dissociation of a protein from RNA, or processing of RNAs. Reac-
tions are set up as for an individual substrate, except that the sub-
strate pool with all sequence variants is used. It is important to set
up the HiTS-Kin experiment to enable monitoring of the reaction
for all or at least for most of the substrate variants. For the least
reactive binding variants the change in sequence reads between
time points can be small, and associated signal to noise ratios are
modest. Appropriate experimental approaches are thus required
to account for fast and slow reactions in a substrate population.
The extraction of rate constants generally requires the considera-
tion of internal competition kinetics [17]. We describe the data
analysis later in this paper.

For RNA processing reactions it is important to consider which
reaction step is rate limiting under the chosen reaction conditions.
For example, substrate discrimination by RNase P occurs mainly
during the binding step and only little selectivity is observed dur-
ing the actual chemical step of the reaction [11]. Therefore, reac-
tion conditions have to ensure that substrate binding is rate
limiting. If it is possible to experimentally isolate specific reaction
steps, substrate discrimination at each of these steps can be specif-
ically probed. Finally, the data analysis requires knowledge about
the overall extent of the reaction [10,11]. It is therefore important
to ensure that this parameter can be accurately measured.
4.2. HiTS-EQ reactions

A HiTS-EQ experiment aims to determine equilibrium binding
constants for each individual substrate. As in HiTS-Kin experi-
ments, reactions are set up like for an individual substrate, except
that a pool with all sequence variants is used. It is important to ver-
ify that equilibrium is reached during the reaction time. HiTS-EQ
measurements can be conducted with protein or RNA excess. Pro-
tein excess allows for a potentially simpler data analysis because
each binding reaction can be treated as a simple competitive bind-
ing reaction, provided the concentration of free protein in the reac-
tion remains largely unchanged. If this condition cannot be
fulfilled, but also for RNA excess over the protein, the vast system
of coupled equilibria for all substrate variants has to be considered.
However, the data treatment is similar to that applied to internal
competition kinetics [11]. It is important to note that with RNA
excess only preferred substrate variants will eventually bind to
the protein. Therefore, insight under these reaction conditions
might be limited. As noted for HiTS-Kin experiments, it is critical
to determine the final extent of the binding reaction [17].
5. Sample collection

5.1. Choice of time points or concentrations

To obtain maximal information from HiTS-Kin or HiTS-EQ
experiments, it is important to capture the full spectrum of rate
constants or affinities, from fast (tight) for preferred substrate vari-
ants to slow (weak) for those least preferred. Rate constants for
substrate variants can differ by several orders of magnitude [10].
Timepoints (HiTS-Kin) or protein concentrations (HiTS-EQ) must
be chosen accordingly. Since the sample collected at each point
has to be converted into and analyzed as separate sequencing
library, sequencing capacity can become limiting for substrates
with > 6 randomized nucleotides (Table 1). On a practical level,
three points, plus the zero point are a good starting value [18]
(Table 1).

RNA processing or RNA-protein binding reactions in vitro often
do not proceed to completion. This is potentially true for HiTS-Kin
and HiTS-EQ as well. Moreover, it is possible that not all sequence
variants react to the same extent. If the final reaction amplitude is
considerable (< 80%), the final extent of reacted substrates should
be determined in a dedicated sample [17,18].

If rate constants or affinities for individual substrates vary by
several orders of magnitude, depletion or accumulation of certain
substrate species will greatly differ in sample points. For example,
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in a HiTS-Kin experiment at an early timepoint, or at low protein
concentration for HiTS-EQ, only preferred substrates react. If the
unreacted substrate pool is measured, only few variants are
depleted and most other variants remain largely unchanged. For
those variants, no instructive data can be obtained from this sam-
ple point, other than a limit for rate constant or affinity. This issue
can be mitigated by measuring both, unreacted (free) and reacted
(bound) RNA. However, low sequence complexity in samples with
few sequence variants can cause problems at the sequencing step.
For late timepoints, the problem is reversed, and the unreacted
RNA pool potentially contains only a small number of slowly react-
ing variants. Again, collecting reacted sample as well provides a
possible solution. A detailed discussion of how the reaction extent
at sample collection points affects HiTS-Kin data can be found in a
recent publication [18].

5.2. RNA sample collection

The physical sample collection step at a time or concentration
point should minimize bias for or against certain sequence vari-
ants. As is customary for work with RNA, nuclease contamination,
buffers with basic pH (> pH 8) and high concentrations of divalent
cations (> 5 mM) should be avoided, if possible, in order to elimi-
nate RNA degradation, which diminishes the amount of sample
and potentially biases the substrate pool. For PAGE elution and
ethanol precipitation steps it is important to ensure that the com-
plete RNA sample is collected. Quantitative precipitation and effi-
ciency of other sample handling steps are conveniently
monitored by radiolabeling of the substrate pool [10].

In addition to maintaining sample integrity during isolation, it
is advisable to maximize the amount of RNA that is collected for
each datapoint. As discussed below, too little RNA in a given sam-
ple can lead to aberrant PCR amplification during library prepara-
tion. Although the experimental design detects aberrantly
amplified variants and provides the potential to correct for ‘‘PCR
artifacts”, we note that very small amounts of RNA can preclude
the generation of usable libraries. It might thus be advisable to
generate and possibly pool multiple samples for points that con-
tain little RNA, in order to generate sufficient material for each
datapoint.

6. cDNA library preparation and Illumina sequencing

The RNA sample for a given timepoint is converted into a cDNA
library for Next Generation Sequencing (Fig. 4). While HiTS-Kin
and HiTS-Eq are compatible with all NGS approaches, we exclu-
sively used the Illumina sequencing platform, which provides the
desirable large numbers of short sequencing reads. Ideally, the
RNA substrate construct contains the binding sites for the RT pri-
Fig. 4. Preparation of cDNA libraries for Illumina sequencing. (a) Experimental scheme
barcode). (b) Representative cDNA libraries for samples at indicated timepoints of the
transcriptase.
mer (first strand synthesis) and PCR primers (Fig. 4). This substrate
design avoids nuclease digestion and ligation steps, which poten-
tially biases the substrate pool [19].

Efficient first strand synthesis requires a minimal amount of
RNA, although techniques exist that reportedly require only
miniscule RNA amounts [20]. The efficiency of first strand synthe-
sis is not specifically tested in our protocol and has generally not
been problematic, because the amount of RNA in a sample can be
readily increased by performing multiple reactions. However, if
experimental replicates reveal inconsistencies even with cDNA
libraries that pass pre-sequencing quality controls, the first strand
synthesis might be problematic. If necessary, first strand synthe-
sis can be monitored using a radiolabeled RT primer or radiola-
beled dNTPs, and subsequent PAGE analysis of the extended
products.

Following first strand synthesis, the sample is PCR-amplified
(Fig. 4). The forward primer contains, in addition to the substrate
binding site, the sequencing adapters, a barcode for multiplexing
multiple samples in a single sequencing run, and a segment with
two randomized nucleotides (degenerate barcode) (Fig. 4). Use of
a degenerate barcode was pioneered by the iCLIP technique to indi-
cate over- or under-amplification of sequence variants during PCR
[21]. The two randomized nucleotides generate a distribution of 16
different variants over the entire cDNA library. For each sequence
variant, this distribution should essentially mirror the overall dis-
tribution. In practice, certain variants of the degenerate barcode
are over- or underrepresented. Such aberrations indicate ‘‘PCR arti-
facts”. A cutoff is defined below which a variant of the degenerate
barcode is considered a PCR artifact. We defined this cutoff by a
Chi-squared test, and discarded the entire RNA sequence variant
that showed such an artifact, because a relatively small number
of substrate variants was affected [10]. However, it is possible to
correct for over- or under-amplified variants of the degenerate bar-
code by normalizing the reads with an aberrant level of degenerate
barcode to the distribution that is expected from the entire library.
Although the degenerate barcode identifies PCR artifacts and
allows for their correction, it does not preclude the possibility of
grossly aberrant PCR amplification that can render an experiment
unusable. In our experience, 10–14 PCR cycles provide robust
libraries, when starting with roughly 1 pmol isolated RNA and dilu-
tion of the RT reaction by a factor of 100 [18].

Following the PCR amplification, sample quality and concentra-
tion of the library is assessed, preferably on a Bioanalyzer, although
an agarose gel can also be used. The sample should be homogenous
and exactly of the expected size. Errors introduced during the Illu-
mina sequencing runs are generally negligible, given that the num-
ber of sequence reads for each variant (> 100) significantly exceeds
the small error rate of the Ilumina sequencing procedure (�0.25%)
[18].
for library generation (ptRNA: pre-tRNA; NN: degenerate barcode; BAR: indexing
RNase P processing reaction [10]. Controls: lane 5 - no RNA, lane 6 - no reverse
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7. Data proccessing and calculation of rate and equilibrium
constants

Illumina sequencing reads are demultiplexed, if applicable.
Adaptor sequences are removed, although in many cases this is
not strictly necessary. Next, for each sequence variant the distribu-
tion of the 16 variations of the degenerate barcode are determined,
and compared to the distribution of the barcode variants from all
obtained reads. We have used a Chi-squared test to compare distri-
butions of the degenerate barcode sequences for each substrate
variant [10]. A variant outside a predetermined cutoff is either dis-
carded, or corrected for, as outlined above. The number sequencing
reads for every sequence variant is then counted for each time-
point for HiTS-Kin experiments, or each protein concentration
point for HiTS-EQ experiments.

To calculate binding rate constants from HiTS-Kin data, we
employ internal competition kinetics. This approach was devel-
oped to evaluate kinetic isotope effects [22]. For HiTS-Kin, internal
competition kinetics considers the competition of all substrate
variants for binding to the protein. Mathematical models to ana-
lyze reactions with multiple alternative substrates have been thor-
oughly discussed in previous papers, and the interested reader is
referred to these publications [10,17,18]. A relative rate constant
(krel) is calculated that describes the rate constant for each
sequence variant, compared to a chosen reference variant, accord-
ing to Eq. (1) [10].

krel ¼

ln ð1�f Þ

Ri;0
Ri

Xi

1

Ri
Ri;0

X

 !

ln ð1�f ÞXi

1

Ri
Ri;0

X

ð1Þ

(Ri: ratio between the given substrate variant i and the refer-
ence substrate at the reaction time t; Ri,0 : ratio between the given
substrate variant i and the reference substrate at the reaction start
(time zero). These ratios are calculated from NGS read numbers
[10]. f: reaction amplitude for the overall reaction (entire substrate
pool) at the reaction time t, determined by PAGE; X: mole fraction
for the given substrate variant i at the reaction time t. For a
detailed derivation of this equation, see Guenther et al. [10].)

This equation does not consider different reaction amplitudes
for different sequence variants. However, it is possible to include
terms that account for potential differences in the final reaction
amplitude for different sequence variants [17]. If such terms are
included, the final reaction amplitude for all sequence variants
must be determined [17].

In theory, only a single timepoint is necessary to calculate a krel
value for a given sequence variant. In practice, krel values calcu-
lated and averaged from multiple timepoints provide more robust
results. As noted above, for proteins that show a large range of dis-
crimination between sequence variants, samples taken at early or
very late timepoints, when only few variants have reacted or
remain, might not provide reliable rate constants, since only a
small fraction of all variants is changed between the zero and the
sample timepoint. For this reason, it is important to assess the
reproducibility of the measurements, as is good practice for all
sequencing approaches.

To determine equilibrium binding constants from HiTS-EQ
experiments we consider competition of all substrates for the pro-
tein. In analogy to the HiTS-Kin approach, we calculate a relative
equilibrium association constant (KA

rel), compared to a chosen refer-
ence variant. Use of relative association equilibrium constants
ensures that preferred substrates are reflected by higher values of
KA
rel, which allows an intuitive comparison to relative rate constants
obtained by the HiTS-Kin experiments. Values for KA
rel are calculated

according to Eq. (2) [11].

K A
rel ¼

P
Si
Sr

� �
Si;0
Sr;0

� �
ð1þ PÞ

� �
� 1

ð2Þ

(P: protein concentration, Si: concentration of substrate variant
i at the protein concentration P at equilibrium; Sr: concentration of
reference substrate at the protein concentration P at equilibrium;
Si,0: concentration of substrate variant i without protein; Sr,0: con-
centration of reference substrate without protein. these concentra-
tions are calculated from NGS read numbers, normalized by the
overall concentration of the RNA used in the reaction. For a
detailed derivation of this equation, see Lin et al. [11].)

Obtained rate or equilibrium binding constants are plotted as
histograms that describe rate constant or affinity distributions
(Fig. 5). The width of these distributions indicates to which extent
a given protein can discriminate between different sequence vari-
ants at the measured kinetic step or at equilibrium [2]. Substrate
variants at the high affinity or high rate constant side of the distri-
bution represent the preferred substrates [2].

It is important to validate relative rate and equilibrium binding
constants for selected sequence variants by independent methods
[10,11,16]. Validation reactions can also provide absolute rate or
equilibrium constants, and it is thus possible to convert relative
parameters from HiTS-Kin and HiTS-EQ experiments to absolute
rate and equilibrium constants.

8. Binding models

HiTS-Kin and HiTS-EQ experiments provide rate and equilib-
rium constants for the entire sequence space of a given RBP. This
is an excellent basis to develop binding models beyond probability
sequence logos of consensus sequences. The simplest binding
model is a position weight matrix (PWM), which represents a score
(coefficient) for each nucleotide in the binding site (Fig. 6a). The
PWM is calculated from all rate or equilibrium binding constants
by linear regression [23,24]. PWMs consider each nucleotide in iso-
lation, but frequently fail to explain high or low ranges of affinity
or rate constant distributions [2,10,24].

Better reflections of affinity or rate constant distributions can be
accomplished by considering functional coupling between at least
two nucleotides in the binding model (dinucleotide weight matri-
ces, DWM; or pairwise interaction matrices, PIM) (Fig. 6b). These
models are calculated by assigning a score to each combination
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of two nucleotides and then fitting affinity or rate constant distri-
butions by linear regression [2,10,24]. PIMs or DWMs can indicate
complex functional coupling between nucleotides in the protein
binding site, including basepairs within the binding site and
whether basepairing promotes or inhibits protein binding. For
example, in our experiments on the C5 protein, a G in position 1
and C in position 2 promotes binding markedly more than A in
position 1 and A in position 2 (Fig. 6b).

Functional coupling between more than two nucleotides can be
incorporated into binding models if PIM or DWMs fail to ade-
quately explain measured affinity or rate constant distributions.
In principle, such higher order coupling can be accounted for as
in PIMs or DWMs, but the number of terms in the resulting equa-
tions might approach the number of available data points, in which
case the model would not be instructive or unique. There are, how-
ever, alternative approaches to assess functional coupling between
more than two nucleotides, including hidden Markov models, neu-
ral network analysis, decision tree guided approaches, and Baye-
sian networks [25–28].

9. Linear free energy relationships and specificity landscapes

To establish a specificity landscape from rate and equilibrium
constant distributions, the two respective distributions must be
correlated with each other. Relative rate and equilibrium constants
for each substrate variant are plotted versus each other, preferably
on a logarithmic scale, because this representation is directly
related to free energy changes [11] (Fig. 7). This approach is anal-
ogous to linear free energy relationships (LFER) in classical physical
chemistry. Of note, a LFER assumes a simple one-step reaction
mechanism and a common rate-limiting step for all substrates.
The correlation of relative rate and equilibrium constants for a
given substrate variant indicates to which extent changes in the
ground state, transition state, or in both states contribute to sub-
strate discrimination (Fig. 8). This information constitutes the
specificity landscape for a given RBP.

The interpretation of the LFER plot is somewhat intricate, since
relative rate and equilibrium constants are plotted and because
rate constants correlate inversely with free energy changes, while
equilibrium association constants directly correlate with free
energy changes (Fig. 8). Nevertheless, it can be clearly and quanti-
tatively determined whether discrimination between substrate
variants occurs in the ground state (Fig. 8). In some cases it is pos-
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sible to define whether discrimination occurs in the transition
state, or in both, ground and transition state (Fig. 8). It is important
to keep in mind that all effects are relative to the reference variant.
In principle, it is possible to convert relative rate and equilibrium
constants to absolute constants and correlate these.

This LFER analysis allows the classification of substrate variants
into several subgroups. For example, groups with higher, or lower
ground state energy, relative to the reference substrate can be
established, and binding models for these subgroups can be
derived, which can reveal whether and how substrate discrimina-
tion differs in ground and transition states [2,11]. Ground state
impact is often associated with RNA structure, both transient or
persistent [2,11].

10. Conclusions and outlook

The HiTS-Kin and HiTS-EQ approaches, the associated LFER
analysis and the resulting specificity landscape provide unprece-
dented insight into the energetic basis of inherent RBP specificity.
Specificity landscapes might aid the interpretation of cellular RBP-
RNA binding patterns determined by iCLIP. Close correlation of
specificity landscapes with cellular RBP binding patterns would
suggest that RNA binding of a given RBP in the cell is largely dic-
tated by its inherent specificity. Divergence between cellular bind-
ing patterns and inherent RBP specificity would indicate that other
cellular factors dictate RBP binding, including RNA structure, other
proteins, or a combination thereof. The comprehensive information
contained in specificity landscapes might also provide novel
insight into the structural basis of RBP specificity. It might be pos-
sible to model structural changes for substrate variants in RNA-
protein complexes, based on existing structures, and on the wealth
of energetic information in the specificity landscape.
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Appendix A. Experimental protocol for determining the
specificity of the C5 protein

The RNA substrates contain the tRNAMet82 body, 8 nucleotides
nucleotides of the genomically encoded leader and 21 nucleotides
at the 50 end for the Illumina sequencing [10]. RNA substrates were
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generated by in vitro transcription from DNA generated by PCR
amplification of the ptRNAMet82 gene (PMET82) [10]. In vitro tran-
scription (400 lL) was performed with 20–15 lg of DNA template,
400 units T7 RNA polymerase (Ambion), 0.01 unit yeast pyrophos-
phatase, 0.5 mM rNTP, and the reaction buffer supplied by the
polymerase manufacturer, supplemented with 2.5 mM MgCl2.
Reactions were incubated overnight at 37 �C. Full length RNA
was purified on 8% denaturing PAGE, as described [29,30]. Recov-
ered ptRNAs were dephosphorylated using calf intestinal phos-
phatase and 50 labeled with c32P-ATP and T4 polynucleotide
kinase according to standard methods. For the HiTS-Kin experi-
ments, the RNA was uniformly labeled with c 32P-GTP in the in
vitro transcription (rNTP 100 lM).

Processing reactions were performed in a buffer containing
50 mM Tris-HCl pH 8.0, 100 mM NaCl, 17.5 mM MgCl2, 0.005% Tri-
ton x-100, with 1 lM ptRNA and 5 nM E. coli RNAse P holoenzyme.
Equal volumes of enzyme and radiolabeled substrate at twice their
final concentrations were prepared in reaction buffer and combined
to initiate the reaction (40 lL). Aliquots (5 lL) were removed, and
reactions were quenched by addition of 5 lL formamide and
100 mM EDTA. ptRNA and reaction products were resolved on
10% denaturing PAGE. The fraction product was determined with
a PhosphorImager (GE) and the ImageQuant software. Precursor
bands in the gel were located by exposure to X-ray film, bands were
excised, eluted as described [29]. Eluted RNA was extracted with
phenol and chloroform, and recovered by ethanol precipitation.

To generate cDNA libraries, recovered RNA was re-suspended in
25 lL H2O. The RNA concentration was determined with a Beck-
man UV spectrophotometer. First strand synthesis was performed
with 4 pmol of this RNA in a 20 lL standard reaction mix with
1 lM primer and 0.5 lL Superscript III (Invitrogen) for 10 min at
42 �C, 40 min at 50 �C and 20 min at 55 �C. The reaction was
stopped by incubation at 95 �C for 5 min. The generated cDNA
was diluted (1:300). One lL of this solution was used in PCR reac-
tions with 1.25 U Herculase polymerase (Stratagene), primer
(0.5 lM) and indexed forward primer (0.5 lM) for 2 min at 98 �C.
subsequent PCR cycles were as follows: 15 s at 98 �C, 20 s at
59 �C, 20 s at 72 �C, and incubation for 10 min at 72 �C. PCR prod-
ucts were purified with P6 microcentrifuge columns (BIO-RAD)
and analyzed by agarose gel electrophoresis. Solutions were pooled
in an equimolar fashion and sequenced in a single lane of an Illu-
mina GA2, according to the manufacturer’s protocols.

Primer sequences were as follows:
RT primer: 50CAAGCAGAAGACGGCATACGATGGTGGCTACGACG

GGAT
Indexed forward primers (NN: degenerated barcode; bold let-

ters: index barcode):

50AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTCTTCCGATCTNNATCGGGAGACCGGAATTCAGATTG
50AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTC TTCCGATCTNNGATGGGAGACCGGAATTCAGATTG
50AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTCTT CCGATCTNNCGAGGGAGACCGGAATTCAGATTG
50AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGAC
GCTCTTCCGATCTNNTCCGGGAGA CCGGAATTCAGATTG

All reads were aligned permitting one mismatch but no gaps,
using BLAST. Aligned reads were then sorted according to their
Index-tag, and separated into different files.
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