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a b s t r a c t

Quantification of the specificity of RNA binding proteins and RNA processing enzymes is essential to
understanding their fundamental roles in biological processes. High-throughput sequencing kinetics
(HTS-Kin) uses high-throughput sequencing and internal competition kinetics to simultaneously monitor
the processing rate constants of thousands of substrates by RNA processing enzymes. This technique has
provided unprecedented insight into the substrate specificity of the tRNA processing endonuclease
ribonuclease P. Here, we investigated the accuracy and robustness of measurements associated with each
step of the HTS-Kin procedure. We examine the effect of substrate concentration on the observed rate
constant, determine the optimal kinetic parameters, and provide guidelines for reducing error in
amplification of the substrate population. Importantly, we found that high-throughput sequencing and
experimental reproducibility contribute to error, and these are the main sources of imprecision in the
quantified results when otherwise optimized guidelines are followed.

Published by Elsevier Inc.
The ability of ribonucleases, ribonucleoproteins, and RNA pro-
cessing enzymes to recognize multiple alternative substrates is
essential to cellular gene expression. For example, the RNA sub-
strates for key enzymes such as the ribosome, spliceosome, tRNA,
andmRNA processing enzymes can vary greatly in sequence and/or
structure [1e5]. Given the broad range of alternative substrates that
are recognized by these enzymes, their specificity cannot be
entirely captured by sequence motif analysis, homology modeling,
or similar approaches that consider only genomically encoded or
optimal substrates [6]. Moreover, it is well established that a bio-
logically relevant investigation of enzyme specificity involves un-
derstanding how substrates compete for association [7e9]. In vitro
structureefunction experiments comparing the kinetics of indi-
vidual RNA substrate variants provide a powerful way to test po-
tential specificity determinants. However, this approach has limited
throughput and, therefore, is not practical for achieving a
comprehensive description of specificity.

A more complete understanding of the specificity of RNA
ing kinetics; PCR, polymerase
etetraacetic acid; CV, coeffi-
binding proteins and RNA processing enzymes can be gained by
analysis of the processing rate constant or equilibrium binding
constant for all possible substrate variants [6]. Such data provide a
means for identifying sequence and structure determinants of
specificity and comprehensively analyzing how sequence variation
affects the reaction mechanism [10]. This level of understanding is
necessary for prediction of the distribution of enzyme binding sites
in the transcriptome and designing RNAs and RNA binding proteins
with novel specificities [11e13]. By analyzing the effect of all
possible variations in substrate RNA sequence on rate constants or
equilibrium constants, the effect of sequence variation at one po-
sition on the sequence preference elsewhere in the binding site is
revealed [14]. Such coupling between the energetic contributions of
nucleotides in the RNA substrate is expected due in part to the
complex structure and folding of RNA. Quantitative analysis of the
interdependence between the contributions of individual nucleo-
tides to recognition by RNA binding proteins and RNA processing
enzymes has the potential to reveal important elements of sub-
strate structure as well as their intrinsic sequence specificity.

Recently, powerful new approaches have been developed aimed
at comprehensively analyzing RNA sequence specificity, including
SELEX (systematic evolution of ligands by exponential enrichment)
[15], Bind-n-Seq [16], and HiTS-RAP (high-throughput sequen-
cingeRNA affinity profiling) [17]. However, these techniques
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monitor only equilibrium processes or provide information on
optimal substrates only and, therefore, do not analyze the full
complement of substrate variants or require specialized instru-
mentation. We developed a new technique termed high-
throughput sequencing kinetics (HTS-Kin) that overcomes these
limitations, allowing quantitative measurement of the second-
order rate constants of thousands of substrate variants in a single
reaction using standard molecular biology methods and standard
Illumina sequencing protocols. Initial application of HTS-Kin was
used to comprehensively analyze the specificity of C5, the protein
subunit of the transfer RNA processing ribonucleoprotein enzyme
RNase P from Escherichia coli, for its corresponding binding site in
the 50 leader of precursor tRNA [14]. The affinity distribution of C5
was found to resemble those of highly specific nucleic acid binding
proteins [14]. Unlike these specific proteins, however, C5 does not
bind its physiological RNA targets with the highest affinity but
rather binds them with affinities near the median of the distribu-
tion. Thus, the data not only delineated the rules governing sub-
strate recognition by C5 but also revealed that apparently
nonspecific and specific RNA-binding modes might not differ
fundamentally but represent distinct parts of common affinity
distributions.

HTS-Kin continues to provide important new insights into
RNase P molecular recognition and is amenable to a broad range of
applications. Therefore, it is necessary to consider sources of un-
certainty, evaluate their contribution to error in determination of
relative rate constants by this method, and propose strategies for
minimizing or avoiding inaccuracies in interpretation of rate
constants calculated from these data. In HTS-Kin, the relative rate
constants for in vitro RNA processing reactions are determined by
analyzing the change in the concentration of individual RNAs in
the unreacted substrate population compared with a reference
substrate using internal competition kinetics. The change in con-
centration of each substrate is calculated from the number of
reads obtained by Illumina sequencing of the substrate population
at select time points in the reaction relative to a reference
substrate.

Thus, for the HTS-Kin technique, there are several factors
requiring optimization in order to minimize error and that may
limit accuracy. These factors include (i) accounting for the variation
in initial substrate concentrations in randomized RNA populations,
(ii) choosing the appropriate time scale for accurately capturing the
range of rate constants in the population, (iii) selecting an appro-
priate reference substrate as an internal standard, (iv) preparing the
cDNA library by reverse transcription and polymerase chain reac-
tion (PCR) amplification, (v) the Illumina sequencing itself, and (vi)
error due to experimental reproducibility. Here, we examine each
of these factors individually with respect to its contribution to the
variation in the observed affinity distributions measured by HTS-
Kin. In general, for optimal HTS-Kin experiments, early reaction
times should be used to minimize rate constant compression.
Although substrate amplification must be maintained in the linear
range, the error due to small differences in cycle number is negli-
gible. In addition, quantification of rate constants for slow reacting
substrates is subject to error from Illumina sequencing, yet a high
degree of experimental reproducibility is achieved for most sub-
strate sequence variants.

Materials and methods

Isolation and synthesis of RNase P subunits and pre-tRNA substrates

Expression and purification of E. coli C5 protein was done as
described previously [18]. E. coli P RNA was synthesized using T7
RNA polymerase (NEB M0251S) in in vitro transcription reactions
containing 5e10 mg of template cDNA. The synthesized RNA prod-
ucts were isolated using PAGE (polyacrylamide gel electrophoresis),
identified and excised by ultraviolet (UV) shadowing, purified by
phenolechloroform extraction and ethanol precipitation, dissolved
in 10 mM TriseHCl (pH 8) and 1 mM ethylenediaminetetraacetic
acid (EDTA, pH 8), and quantified by UV absorbance. The E. coli pre-
tRNAMet82 gene was cloned into the pUC18 vector, and PCR was
used to introduce all possible mutations at positions N(e1) to
N(e6) in the 50 leader by using mutant forward primers to produce
cDNA used for in vitro transcription as described, above, with
20e25 mg of template. PCR conditions consisted of the following: 1
U of Taq DNA polymerase (Roche 04638964001), 1� supplied PCR
buffer, 0.2 mM dNTP mix, 0.5 mM forward and reverse primers, and
18 nM template DNAwere heated to 95 �C for 2min, followed by 40
cycles of 95 �C for 30 s, 55 �C for 45 s, and 72 �C for 1 min, and final
extension at 72 �C for 5 min.

Multiple turnover HTS-Kin reactions

RNase P in vitro pre-tRNA processing reactions were performed
in 50 mM TriseHCl (pH 8), 100 mM NaCl, 0.005% Triton X-100, and
17.5 mM MgCl2. The holoenzyme complex and pre-tRNA pool
(spiked with a negligible amount of 32P-labeled pre-tRNA) were
treated separately by denaturation at 95 �C for 3 min, followed by
renaturation in MgCl2 at 37 �C for 10 min. Reactions were initiated
using equal volumes of enzyme and substrate with final concen-
trations of 5 nM RNase P and 1 mM pre-tRNA. Aliquots of 160 ml
were taken at desired reaction times and quenched in 33mM EDTA
on dry ice. Substrate and product were separated on a 10% dena-
turing polyacrylamide gel and exposed to a phosphorimager screen
and X-ray film. Radioactivity was quantified using ImageQuant
software, and fraction of reaction was calculated by taking the
amount of product at each time point divided by the addition of
substrate and product bands. After substrate isolation and purifi-
cation, first-strand synthesis was performed using 5 ml of the
equalized RNA and 1 mM reverse primer at 72 �C for 10 min, ice for
1 min before adding 100 U of SuperScript III reverse transcriptase,
0.75 mM dNTP mix, 2.5 mM DTT (dithiothreitol), and 1� supplied
RT buffer. Incubation continued at 42 �C for 10 min, 50 �C for
40 min, 55 �C for 20 min, and finally 95 �C for 5 min. Samples were
diluted 1:300, and 1 ml was used to amplify for high-throughput
sequencing. PCR was performed as above with forward primers
that bound to the 21-nt sequence at the 50 end and contained a
barcode for each time point and randomized dinucleotide
sequence.

Results and discussion

Determination of relative rate constants for in vitro RNA processing
reactions by HTS-Kin

Internal competition kinetics, which HTS-Kin uses to calculate
relative rate constants from Illumina sequencing data, is based on
the fact that variation in specificity is due to differences in the
activation energies for kcat/Km of alternative substrates for the same
enzyme (Fig. 1A). There are several advantages and potential dis-
advantages in using internal competition kinetics; therefore, it is
important to consider these factors in the context of their appli-
cation in HTS-Kin. The kinetics of such reactions containing mul-
tiple alternative substrates has been described previously [8,9,19],
and the equations and derivations for internal competition were
recently reviewed and developed for quantification of both pre-
cursor and product ratios by Anderson [20]. Briefly, as illustrated in
Scheme 1, a single population of enzyme (E) can combine with
multiple substrates (S1, S2, S3, …, Si).



Fig.1. High-throughput sequencing kinetics (HTS-Kin) measures processing rates of
thousands of RNA substrates using internal competition kinetics. (A) Reaction coor-
dinate diagram depicting the processing of multiple pre-tRNA substrates by RNase P.
As the reaction progresses, the activation energy for kcat/Km determines the relative
rate of product formation; thus, favorable substrates (blue) are depleted more quickly,
whereas unfavorable substrates (orange) are minimally processed and accumulate
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The rate of product formation of any individual substrate (vobs1)
is proportional to the fraction of total enzyme in the ES1 form [21].
Additional alternative substrates deplete ES1, and consequently the
rate of formation of P1, by acting as competitive inhibitors. For
alternative substrates, here the substrate variant S2 and wild-type
reference S1, the multiple turnover rate equation is essentially
that for competitive inhibition and the ratio of the two observed
rates simplifies to [8,9,22,23].

vobs2
vobs1

¼

�
kcat=Km

�
2�

kcat=Km

�
1

�
S2
S1

�
: (1)

Thus, the relative rate constant, or the ratio of the processing
rate constants for the two competing substrates, is the ratio of their
respective kcat/Km values multiplied by the ratio of their concen-
trations. Integration of the above general equation describes how
the ratio of substrates will change over the time course for first-
order and pseudo-first-order reactions [21,24]:
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In Eq. (2), the values of S1,0 and S2,0 are the initial concentrations
of the two substrates, and S1 and S2 are their concentrations after a
specific time interval. This expression can be integrated and rear-
ranged to give [14].
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where Ri is the ratio S2/S1 determined at remaining total substrate f
and Ri,0 is the ratio S2/S1 at the start of the reaction. This expression
is valid for any analytical method to measure S2/S1. In the case of
HTS-Kin, these ratios are calculated from the number of Illumina
sequence reads obtained from libraries made from the substrate
population at the start of the reaction and at specific fractions of
total substrate reacted.

HTS-Kin reactions involving RNase P require the following steps,
all ofwhichhave specific features that can impact the reproducibility
and contribute to the error in the calculation of relative rate con-
stants. First, a population of pre-tRNA randomized in the 50 leader at
N(e6) to N(e1) that contacts both the RNA and protein subunits of
RNase P is synthesized. Randomization is accomplished using the
cloned wild-type pre-tRNAMet gene as a template for PCR amplifi-
cation in which the forward primers encode the randomized posi-
tions. The randomizedDNApool is thenused for invitro transcription
to generate the randomized pre-tRNA substrate pool. Although the
transiently relative to the wild-type substrate (black). (B) The substrate and product at
different time points in the reaction are separated on a denaturing polyacrylamide gel
(left), and the residual substrate population is isolated for high-throughput
sequencing. Plotting the normalized reads for each substrate variant from Illumina
sequencing shows that as the reaction progresses, substrates with fast krel values are
depleted from the residual substrate population, whereas those with slow krel values
accumulate (right). (C) An affinity distribution measured using HTS-Kin using a pre-
tRNAMetN(�1 to �6) randomized population is shown as the number of substrate
variants with a given krel value and depicts the entire range of effects of this variation
on enzyme processing. By definition, the wild-type pre-tRNA has a krel of 1, and sub-
strates are calibrated to this as either faster (krel > 1) or slower (krel < 1) than the
reference. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)



Scheme 1. Association of RNase P (E) with multiple ptRNA substrates (S1, S2, S3, Si).
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initial synthetic DNA population is synthesized to result in an
approximateequimolardistributionofnucleotidesateachposition, it
is unlikely that this distribution is maintained throughout the PCR
andworkup of the substrate pool. However, the initial distribution of
substrate variants is assayed directly by Illumina sequencing. More-
over, as described in more detail below, the use of internal compe-
tition kinetics minimizes the effects of systematic inaccuracies in
measurements of substrate ratios and does not rely on an equimolar
distribution in the initial precursor population.

The substrate pool is reacted with RNase P, and substrate and
product from individual reaction time points are separated on a
denaturing polyacrylamide gel. The reaction progress is quantified
and the substrate RNA populations are isolated at different time
points and made into libraries for Illumina sequencing using
reverse transcription and PCR amplification using a unique barc-
odes for each time point (Fig. 1B). By monitoring the number of
Illumina reads of each sequence as a function of time, it is clear that
as the reaction progresses, favorable substrates deplete from the
residual substrate population while those with slow rate constants
accumulate (Fig. 1B). Using Eq. (3) above, this information is used to
calculate krel values for all 4096 substrate variants. These data
represent the entire range of effects of this 50 leader variation on
enzyme processing. This is best exemplified in an affinity distri-
bution as shown in Fig.1C as a histogram of the number of substrate
variants with a specific relative rate constant, krel.

The application of internal competition kinetics in this method
offers several important advantages with respect to accuracy and
precision of the resulting rate constant distribution. Due to the use
of substrate ratios to calculate rate constants, systematic inaccur-
acies in the determination of these ratios, which may occur during
several steps in the process, are canceled. In addition, experimental
variation in krel calculation is minimized because all substrates
react in the same reaction vessel and under identical reaction
conditions. Nonetheless, disadvantages include the necessity to
optimize several key reaction parameters and the potential for
contributions from multiple sources of stochastic error that may
propagate through the experiment. In the following sections, we
consider the advantages and disadvantages at each step in the
application of HTS-Kin with respect to reproducibility and mini-
mization of error. First, we consider factors that may skew results or
require optimization in the calculation of relative rate constants
from substrate ratios. Then, we consider factors affecting the
workup and measurement of the substrate ratios themselves by
Illumina sequencing.
The magnitude of krel is independent of the distribution of substrate
mole fractions in the initial precursor RNA population

One key factor apparent from inspection of Eq. (1) is that this
expression is valid for any initial values of S1 and S2. Accordingly,
the observed krel valuesmeasured by HTS-Kin should necessarily be
independent of the individual concentrations of each individual
substrate in the randomized pre-tRNA population. To test this in the
application of HTS-Kin, we calculated the apparent mole fraction
for each substrate variant in the initial substrate pool using its
number of sequencing reads and dividing by the total number of
reads for all substrate variants and then compared these values
with the calculated krel for that substrate. As shown in Fig. 2A, a
density plot of the observed krel plotted versus the mole fraction in
the initial substrate population clearly shows that the two distri-
butions are uncorrelated. In addition, a comparison of the ratio of
high-throughput sequencing reads of mutant substrate towild type
in the startingmaterial to the observed rate constant also reveals no
correlation between these two parameters, as expected (Fig. 2B). In
contrast, the change in the ratio of Illumina sequence reads for each
substrate variant at a specific fraction of reaction relative to the
ratio in the initial substrate population necessarily defines the
magnitude of the observed krel calculated by Eq. (3). In Fig. 2C, the
change in Illumina sequencing reads over the course of the reaction
is plotted versus the magnitude of the calculated krel value to
illustrate this fact. Thus, these results are consistent with principles
of alternative substrate kinetics introduced above and described in
more detail elsewhere [20].

Optimization of reaction kinetics and choice of internal reference for
calculation of krel

Two additional aspects of the application of internal competition
kinetics to calculate krel that are self-evident in Eq. (3) are the se-
lections of the fraction of reaction (f) and the reference substrate
(essentially S1 from Eq. (1)). For the application of HTS-Kin to RNase P
specificity, the genomically encoded leader sequence for the pre-
tRNAMet served as the reference substrate. For ease of interpretation,
the use of a wild-type sequence as the reference has the obvious
advantage that the absolute magnitude of krel reflects the fold dif-
ference in observed rate constant from a biologically relevant stan-
dard. Note, however, that the genomically encoded reference may or
may not be the optimal substrate with respect to enzyme processing.

It follows that substrate variants with fast rate constants will
exhibit a large change in substrate ratio relative to the reference (Ri)
per unit time, whereas slower reacting species will result in only
small changes in the observed ratios. A disadvantage is that pre-
cision of every krel measurement depends on the level of error in
the measurements of the wild-type reference substrate (S1 and
S1,0). The contribution of this error to the calculated krel value may
limit precision of rate constant measurements that are significantly
different from the reference. To address this potential limitation, 21
different reference substrate variants spanning a wide range from
fast to slow processing by RNase P were each used to calculate the
krel of all 4096 substrate variants. The krel determined for a single
substrate variant using each of the 21 different reference substrates
was averaged, and a standard deviation was calculated. References
that produced a krel outside of the standard deviation for any
substrate were eliminated. The remaining 15 reference substrates
were used to calculate an average krel for each pre-tRNA, and a plot
of this analysis is shown in Fig. 3A. The results clearly show a high
correlation with krel determined using the wild-type reference.
Error bars on the plot of krel values determined using multiple
references provide an estimate of maximum uncertainty from us-
ing a single reference.



Fig.2. Analysis of the dependence of the observed krel on the distribution of substrate
mole fractions in the initial precursor RNA population. From a single HTS-Kin reaction
(Experiment 1) with pre-tRNA substrate variants randomized in the 50 leader at N(�6
to�1), various aspects from Illumina sequencing are compared with the calculated krel.
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As noted previously [25,26], a second factor that is integral in
optimizing the range of effects that can be measured by HTS-Kin is
the selection of appropriate time points for calculation of the ex-
pected range of krel values. This is apparent from Eq. (3), where the
fraction of reaction is used to calculate each krel. The primary
consequence of choice of inappropriate time points is illustrated in
Fig. 3B, where affinity distributions calculated from samples taken
at different time points in the same reaction are compared. The
affinity distribution determined from an early time point provides
the greatest range in krel values, whereas at later points it contains
higher levels of substrate conversion exhibit compression in the
range of observed krel values, as discussed previously [20,26]. The
basis for this effect is illustrated in the inset of Fig. 3B with simu-
lated kinetics for RNAs with different rate constants. At very early
points in the reaction, only the fastest substrates will be processed,
making calculation of krel for the vast majority of substrates highly
error prone because their concentrations have changed little over
this short time. Conversely, calculating krel from late points in the
reaction provides a poor measure of processing rates because the
fastest substrates are nearly consumed to completion, making the
measurement of their krel inaccurate. At these later times in the
reaction, the substrate ratios approach values reflect incomplete
reactivity of the initial RNA population due to misfolding or other
chemical differences. In addition, substrates with slower rate con-
stants are afforded sufficient time to reach similar fractions of re-
action to their faster counterparts. As a result, the observed krel
values become artificially faster, as discussed previously [25,26].

As shown in Fig. 3C and D, we investigated the effect of varying
the fraction of substrate reacted (f), from approximately 0.1 to 0.5,
on the determined krel for each substrate variant. In this experi-
ment, a single HTS-Kin reaction containing the same randomized
pre-tRNA pool was sampled at several time points. The observed
fraction of substrate reacted was determined for each time point,
and affinity distributions were calculated. Fig. 3C and D shows the
comparison of the krel distributions obtained for f ¼ 0.12 versus the
distributions obtained at fs ¼ 0.23 and 0.54, respectively. A clear
difference is observed in the range of krel values calculated using the
substrate populations from later time points compared with
f ¼ 0.12. The range of krel values decreases dramatically from 1000-
fold at f ¼ 0.12e100-fold at 0.23 and just over 10-fold at 0.54. This
compression in the calculated krel values is clearly shown in an
overlay of the histograms representing the individual affinity dis-
tributions for the three experiments (Fig. 3A). The data further
demonstrate that sampling at early time points at low substrate
conversion provides the greatest accuracy. However, gains in the
increase in signal to noise for slower reacting substrates achieved
by sampling at later time points is more than offset by a large in-
crease in systematic error affecting the entire affinity distribution.
Reliability of first-strand cDNA synthesis and quantitative PCR for
Illumina library preparation

After the substrate RNA population is isolated from different
times in the reaction, it must be converted to cDNA using reverse
(A) Density plot of the mole fraction of each substrate variant (calculated as the ratio of
number of reads of that substrate to that for all substrates at T0) compared with its
calculated krel, with the number of substrates in a particular area on the graph indi-
cated by the shade of blue. (B) Density plot of the raw number of reads of each sub-
strate variant in the starting material compared with the calculated krel of that
substrate. (C) Ratio of raw reads of a substrate variant at a defined time in the reaction
to that in the starting material (Illumina reads for Sn at 12% reacted/Illumina reads for
Sn at 0% reacted) shows an exponential decrease with increasing krel. (For interpreta-
tion of the references to colour in this figure legend, the reader is referred to the web
version of this article.)



Fig.3. Optimization of reaction kinetics and choice of internal reference for calculation of krel. (A) Calculation of krel from HTS-Kin data from Experiment 1 using the wild-type 50

leader (AAAGAU) as a reference compared with using 15 50 leader variants spanning a range of krel as references in combination. The results of a single HTS-Kin reaction of pre-
tRNAMetN(�6 to �1) with RNase P are investigated for their processing rate at increasing fractions of total substrate reacted. Inset: Simulation of the reaction progress of substrate
variants with a range of rate constants. The simulated rate constants are indicated in the legend, and an identified optimal time for isolation and calculation of krel by HTS-Kin is
indicated by the dashed black line. (B) Affinity distributions of the number of substrates with an indicated krel at various times in the same HTS-Kin reaction indicated in the legend.
(C,D) Comparison of the krel determined from the same HTS-Kin reaction at different time points is shown as a density plot. Compression of rate constants is observed strongly at
late times in the reaction.
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transcription followed by PCR to generate the library for Illumina
sequencing. During PCR, Illumina adapters are added to the cDNA
corresponding to each RNA substrate as well as unique barcodes in
order to distinguish reaction time points to allow for multiplexing.
Previous analytical studies of RNA quantification using Illumina
sequencing showed that the majority of error is the result of library
preparation or poor choice of PCR primers [13,14]. The accuracy of
krel in turn relies on the accuracy of measuring changes in the
abundance of substrate variants over time. Therefore, it is essential
to amplify the library under conditions where these differences are
accurately preserved; thus, later amplification steps of HTS-Kin
must be carefully considered and performed.

Several studies have aimed at achieving a quantitative under-
standing of various artifacts introduced by PCR that are relevant to
HTS-Kin. For instance, template concentration, bias against high GC
templates, template switching, and polymerase errors may
contribute to errors in downstream steps [27e29]. These previous
studies indicated that this bias and these errors can be minimized
by using the minimum number of amplification cycles required to
form products and defining the optimal template concentration in
the PCR. Another consideration is the importance of testing for
differential amplification of different barcoded primers because
this can introduce amplification and subsequent sequencing bias
for barcodes containing structure [30e32]. In our own experience,
inaccurate results in one instance during preliminary experiments
were traced to this effect. This consideration is tested by validation
of all barcoded primers used for amplification by RT-PCR (reverse
transcription PCR) or qPCR (quantitative PCR).

To diminish to the greatest extent possible the types of error
during PCR amplification listed above, we determined the mini-
mum number of PCR cycles necessary to achieve an identifiable
cDNA product. Differences in the amount of pre-tRNA substrate
remaining at different time points in the reaction were accounted
for by normalizing the amount of template RNA used in the reverse



Fig.4. Analysis of the reliability of first-strand cDNA synthesis and quantitative PCR for
Illumina library preparation. Substrate cDNA synthesis and amplification from RNase P
HTS-Kin reactions from Experiment 2 with pre-tRNAMetN(�6 to �1) are shown. (A) A

Fig.5. Illumina sequencing errors contribute to imprecision in measurement of low krel
values. Resequencing was performed on the cDNA created from the second experi-
mental replicate of HTS-Kin performed on RNase P processing of pre-tRNAMetN(�6
to �1). The krel values determined from both Illumina sequencing runs of the same
samples are plotted in a density plot where the number of points in a given area of the
graph are indicated by the color and key at the right and show significant error in krel
determination for slow reacting substrates. (For interpretation of the reference to color
in this figure legend, the reader is referred to the web version of this article.)
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transcription reaction. We used semi-quantitative PCR to identify
the linear range of amplification for each residual substrate popu-
lation (Fig. 4A). To combat variations in PCR that would diminish
the variation in the substrate population, we selected 14 cycles as
the first number of PCR cycles for which a definable cDNA product
band was observed.

In addition, inaccuracy in the construction of the Illumina
sequencing library may arise if the amount of PCR products is not
proportional to the concentration of input cDNA. To minimize this
possibility, we ensure that the amount of DNA produced at the
chosen number of PCR cycles is dependent on the amount of the
first-strand cDNA product used as template. To demonstrate this,
we performed PCRs for 14 cycles for reactions containing a 2-fold
difference in the amount of first-strand cDNA synthesis products
used as template. As shown in Fig. 4B, an approximately 2-fold
increase in the amount of PCR product is detected by agarose gel
electrophoresis in reactions containing a proportional increased
cDNA template.

Nonetheless, it is possible that despite optimization there is
nonlinear amplification of individual sequences even within the
linear range for PCR amplification of the total population, which
could be a potential source of error in the determination of krel
values by HTS-Kin. To test this directly, we determined the
observed krel from samples in which the same cDNA template was
amplified for 14 versus 16 cycles of PCR, which are both in the
apparent linear range of PCR amplification. In Fig. 4C, the krel values
measured for all substrate variants in these two samples are
compared. The krel values are highly correlative, in particular for the
1% agarose gel showing the results of semi-quantitative PCR performed on the first-
strand synthesis template from HTS-Kin reactions at different times in the reaction.
The reaction time and number of PCR cycles are indicated at the top of the gel. RT,
reverse transcription. (B) A 1% agarose gel showing linearity in the first-strand cDNA
synthesis by reverse transcriptase. PCRs containing 1 or 2 times the amount of first-
strand cDNA template from substrate populations at 0 and 12.36% reacted in HTS-
Kin were performed for 0 and 14 cycles, and a control reverse transcription reaction
was included in which no substrate RNA was added. (C) Comparison of the krel
determined for the same HTS-Kin reaction in which the same first-strand cDNA from
the substrate population was amplified for 14 or 16 cycles depicted as a density plot.



Fig.6. HTS-Kin replicates show reproducible determination of substrate variant krel
except for slowest reacting substrates. (A,B) Comparison of the krel determined from
replicate HTS-Kin experiments shown as a density plot, with the color indicating the
number of points in that portion of the graph as shown by the legend. There is good
correlation between replicates except for substrates processed with very slow krel. (C)
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fastest reacting substrate variants. Significantly greater differences
are observed in the krel values for slower reacting species.

Because the samples compared in Fig. 4C are from the same
reaction, the observed error for the slow reacting species could be
due to errors in downstream Illumina sequencing steps. As dis-
cussed above, the slowest reacting species will undergo the
smallest change in concentration over the reaction; therefore, these
data will exhibit the greatest sensitivity to stochastic measurement
errors in the determination of these values. The high degree of
correspondence for the vast majority of the population demon-
strates the robustness of the method so long as attention is paid to
whether linearity is maintained with respect to template concen-
tration and PCR amplification.

Robustness of Illumina sequencing for reproducible determination of
krel values

An unknown level of error may come from the variability be-
tween Illumina sequencing runs due to variation in flow cell,
sample handling, or the instrument itself. Error from these sources
can be minimized by pooling samples from different HTS-Kin re-
actions and different time points in the same Illumina flow cell lane
using unique barcodes and combining these with other users'
samples or a control sample. The reported error rate for Illumina
HiSeq 2000 is 0.26%, the lowest reported for major high-
throughput sequencing platforms [33]. Although we used data
from the Illumina Hi-Seq 2500 in these studies, a similarly high
level of fidelity is expected. Systematic miscalling of a particular
nucleotide in the cDNA has been investigated and quantified, and
there are various approaches to correcting these errors [34,35].
However, because of the large number of sequence reads
(500e1500) obtained for most substrate variants, it is not necessary
to apply them in HTS-Kin.

To estimate the error introduced in the Illumina sequencing
step of the procedure, we compared the rate constants calculated
from two sequencing runs on the same cDNA sample. Fig. 5 shows
a plot of the two krel data sets obtained from the two separate
sequencing runs. Inspection of the data shows that the substrate
variants with the slowest krel have the greatest difference between
measurements. Because the samples were not prepared separately
for each run, we attribute this error directly to the variability of
the high-throughput sequencing. Hence, Illumina sequencing ap-
pears to limit the ability to detect small changes in concentration
of the slowest substrates over the short term in the RNase P re-
action. Nonetheless, the data reveal highly robust reproducibility
of the calculated krel values, demonstrating that for the majority of
sequences the error introduced by Illumina sequencing is minimal.

Evaluation of experimental error

Optimally, analytical methods should provide data with suffi-
cient precision such that the principal source of error is due to
differences between experimental trials. We quantified the
magnitude of experimental error between replicate HTS-Kin ex-
periments. RNase P reactions were performed with the same pre-
tRNAMetN(e6 to �1) population in triplicate and time points taken
to achieve similar fractions of reaction, and the krel values were
The standard deviation (SD) in krel from three replicate HTS-Kin reactions of RNase P
with pre-tRNAMetN(�6 to �1) was calculated, and the ratio of substrate krel to its SD
was plotted. Substrates with high error are indicated by a ratio greater than 1. The
coefficient of variation ratio (SD/krel) is compared with the observed processing rate,
and substrate variants are aligned from fast to slow reacting. (For interpretation of the
reference to color in this figure legend, the reader is referred to the web version of this
article.)
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determined for each substrate variant using Eq. (3). The variation
among the three individual experiments is visualized by plotting
the resulting affinity distributions. In Fig. 6A, the affinity distribu-
tions for Experiments 1 and 2 are compared, and in Fig. 6B the data
for Experiments 2 and 3 are compared. Both plots demonstrate
strong correlation among the three data sets given that the ma-
jority of substrate variants are processed with very similar
observed krel values between replicate experiments. Deviation from
this trend is observed for substrates with very slow krel values that
show the least correlation between replicates. As described above,
this is due in large part to the relatively small changes in these
substrates' concentration over the short time of the reaction that
are in turn limited by error in the quantification of RNA levels by
Illumina sequence reads.

The average krel and standard deviation calculated for each
substrate variant was used to calculate the coefficient of variation
(CV ¼ standard deviation/average). The CV for each substrate
variant was then plotted versus the magnitude of its average krel
value. As shown in Fig. 6C, the substrate variants with the fastest
krel values are measured with the greatest precision. As expected
based on the plots shown in Fig. 6A and B, the CV for each substrate
variant increases as krel decreases. The error increases sharply only
for substrate variants with krel values that are 50- to 100-fold
slower than the reference. However, the majority (75%) are
measured with CV < 1, and the fastest 50% of sequence variants are
measured with higher precision (CV < 2).
Conclusions

The analyses shown here provide strong support for the inter-
pretation that the primary source of error for most krel values
determined by HTS-Kin arises due to experiment-to-experiment
variation. Importantly, the reproducibility between experiments
for the majority of substrates shows a CV less than or equal to 1 for
krel values spanning two orders of magnitude. For systems with a
greater range of rate constants, the reproducibility is expected to be
even better. However, for the slowest reacting substrate variants, an
additional source of error becomes significant. The application of
internal competition kinetics requires the measurement of the
change in the ratio of the abundance of a particular RNA at the start
of the reaction and at a specific time point. For slow reacting se-
quences, this change in RNA concentrations is small and falls below
the range that can be reproducibly measured by Illumina
sequencing. This effect is not significantly amplified by experi-
mental error, but it limits accurate measurement at the lowest krel
values. In sum, a carefully performed HTS-Kin experiment will
include benchmarks using the procedures outlined here. Namely,
the fraction of reaction should be carefully chosen to provide the
greatest range in rate constants and an appropriate reference
substrate identified that lies near the center of the rate constant
distribution. Any analytical method used to quantify the change in
substrate or product ratios can be applied; however, the error
within these measurements necessarily impacts the measured krel;
therefore, its precision must be investigated. In addition, the
method of preparation of the RNA substrates for high-throughput
sequencing, be it amplification to cDNA by PCR or ligation, in-
troduces its own bias that can be handled to an extent by appro-
priate determination of the linear range of this amplification. The
main error for substrates with slow krel comes from errors in pre-
cision of Illumina sequencing, and this should be investigated for
other forms of quantification. HTS-Kin provides reproducible de-
terminations of krel values for RNase P processing reactions, and
these principles are likely to hold for many analogous in vitro RNA
processing reactions.
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