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ABSTRACT: We employ quantum mechanical/molecular mechanical um-
brella sampling simulations to probe the free energy surfaces of a series of
increasingly complex reaction models of RNA 2′-O-transesterification in
aqueous solution under alkaline conditions. Such models are valuable for
understanding the uncatalyzed processes underlying catalytic cleavage of the
phosphodiester backbone of RNA, a reaction of fundamental importance in
biology. The chemically reactive atoms are modeled by the AM1/d-PhoT
quantum model for phosphoryl transfer, whereas the aqueous solvation
environment is modeled with a molecular mechanics force field. Several
simulation protocols were compared that used different ionic conditions and
force field models. The results provide insight into how variation of the
structural environment of the nucleophile and leaving group affects the free
energy profile for the transesterification reaction. Results for a simple RNA
backbone model are compared with recent experiments by Harris et al. on the
specific base-catalyzed cleavage of a UpG dinucleotide. The calculated and measured free energies of activation match extremely
well (ΔF⧧ = 19.9−20.8 vs 19.9 kcal/mol). Solvation is seen to play a crucial role and is characterized by a network of hydrogen
bonds that envelopes the pentacoordinate dianionic phosphorane transition state and provides preferential stabilization relative
to the reactant state.

■ INTRODUCTION

Cleavage of the phosphodiester backbone of RNA is an
essential reaction in biology that is fundamental to many
important biological processes ranging from gene splicing and
regulation to viral replication and cell signaling.1 It is thus
significant that several small RNA molecules, such as the
hammerhead,2 hairpin,3 hepatitis δ virus,4 Varkud satellite,5 and
glmS6 ribozymes, catalyze the phosphoryl cleavage of their own
backbones. While the secondary and tertiary structures of these
ribozymes are all distinct and their optimal ion identity and
concentration requirements differ significantly, they all catalyze
the same intramolecular 2′-O-transesterification reaction and
form a 2′,3′-cyclic phosphate and 5′-hydroxyl as products.7−9
As with all catalytic reactions, the mechanistic features of

ribozymes and protein enzymes are inherently related to their
rate enhancement relative to the background rate of the non-
catalytic reaction, in this case the cleavage of an RNA backbone
in aqueous solution. Hence, a logical starting point for
determining the key mechanistic characteristics of self-cleaving
ribozymes would be first to determine the characteristics of the
uncatalyzed mechanism. Indeed, there is an established
literature concerning model compounds for phosphate 2′-O-
transesterification,10−14 but these studies frequently focus on
non-native, enhanced leaving groups,15−17 reactions perturbed

by chemical markers needed for spectroscopic analysis,18 or
temperature ranges far from normal biological conditions.15,19

Nonetheless, these studies provide a firm experimental baseline
for comparisons between native uncatalyzed and catalyzed
reactions.
Theoretical and computational approaches, particularly

molecular dynamics (MD), have emerged as a valuable tool
in the study of chemical reactions because they allow access to
full atomistic detail. However, the degree to which meaningful
insights into mechanism can be gained from simulations relies
on the accuracy of the models that are employed for the
particular system under study. This leads to a natural synergistic
relationship between experiment and theory, with experiment
providing key benchmarks and theory providing detailed
molecular level interpretations and testable predictions. This
approach is well illustrated by the development of fast and
accurate quantum mechanical/molecular mechanical (QM/
MM) methods calibrated to specific experimental and ab initio
data,20 which has opened the door for accurate tests of explicit
reaction pathways, even for large biomolecules.21,22 The free
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energy surfaces of such pathways can be rigorously compared to
experimental kinetics measurements and also have strong
connections to highly sensitive mechanistic probes such as thio
and isotope23 as well as mutational24 effects.
To rationally decompose the complexity of RNA backbone

cleavage, the present work focuses on mapping the free energy
profiles of a series of molecules undergoing transphosphor-
ylation to form cyclic phosphates under basic conditions
(Figure 1). The systems are akin to the simple UpG

dinucleotide recently studied experimentally by Harris et al.25

The dinucleotide UpG matches the sequence at the cleavage
site of the self-cleaving hepatitis δ virus ribozyme26 and is an
active substrate for ribonuclease A.27 Its cleavage mechanism in
solution is therefore a valuable benchmark. In solution, the
observed first-order rate constant for UpG cleavage increases
linearly from pH 10 to 13, becoming pH independent beyond
that point; extrapolating to “infinite” pH gives an intrinsic rate
constant of 0.06 s−1.25 Using novel techniques,25,28 Harris et al.
also measured primary and secondary kinetic isotope effects
(KIEs) for base-catalyzed UpG cleavage, as well as the solvent
D2O effect. The lack of any significant solvent D2O effect
combined with an estimated correction for equilibrium isotope
effects on the nucleophile confirms the conventionally accepted
specific base mechanism. Taken together, the KIEs suggest that
UpG undergoes a concerted mechanism with a “late”,
productlike transition state.
On the basis of QM/MM MD simulations, a theoretical free

energy of activation is calculated here that allows direct
comparison to the experiments of Harris et al. The quality of
the comparison begets significant confidence in also using the
simulations to characterize the reactant and transition states
structurally, as well as analyze the role of water and ions in the
reaction. Additionally, because of the wide range of models
available for (and commonly used in) QM/MM studies, the
sensitivity of the results to different water models and
Lennard−Jones parameters is compared and discussed.

■ COMPUTATIONAL METHODS
Molecular Dynamics. MD simulations were performed

using the AMBER 1229 suite of programs. An integration step

of either 1 or 2 fs was used depending on whether or not the
SHAKE30 algorithm (tolerance = 1.0 × 10−8) was used to
constrain bonds with hydrogen in the solute; the SETTLE31

algorithm was always used to constrain rigid water molecules.
Temperature and pressure were regulated with the methods of
Andersen32 (310 K, “massive” collisions every 2000 steps) and
Berendsen33 (1 bar, time constant of 5 ps, compressibility =
44.6 × 10−6 bar−1), respectively. Long-range electrostatics were
treated using periodic boundary conditions in a rhombic
dodecahedral cell and the particle mesh Ewald (PME) method
for both MM34,35 and QM/MM36,37 calculations. PME
calculations employed sixth-order B-spline interpolation with
50 grid points (≈1 point/Å) along each axis; the Ewald
coefficient was chosen such that the estimated error in the
direct space energy was on the order of 10−5 kcal/mol. QM/
MM Ewald calculations used a reciprocal space defined by kmax
= 7 and kmax

2 = 98; the QM/MM Ewald coefficient was
separately chosen as 10V−1/3, where V is the cell volume in Å3

(see the Supporting Information for details). Lennard−Jones
and direct space Coulombic interactions were truncated at 10
Å. For the QM/MM direct space, an atom-based switching
function was applied between 8 and 10 Å.
All QM/MM simulations used the AM1/d-PhoT semi-

empirical Hamiltonian,20 with the QM region defined as the
entire solute. Lennard−Jones parameters were taken from
either the AMBER FF1038−41 or the CHARMM2742,43 nucleic
acid force fields, with the exception of select interactions with
sodium ions (see the Discussion and Supporting Information).
The solvent environment was modeled using either the
TIP3P44 or the TIP4P-Ew45 rigid water model and the
associated alkali metal and halide ion parameters of Joung
and Cheatham.46 Simulations contained 2640 solvent mole-
cules (e.g., water molecules or water molecules in approx-
imately 140 mM NaCl; see the Supporting Information).
The selected model is appropriate for several reasons, and

similar QM/MM models have been successfully used elsewhere
in studies of both enzymatic21,22,47 and nonenzymatic48,49

phosphoryl transfer. First, AM1/d-PhoT is specifically para-
metrized to reproduce gas phase ab initio calculations of an
extensive set of phosphate-containing compounds and reactions
(see refs 20 and 50 and the Supporting Information) and has
also been shown to be the best choice for reproducing
geometries and energies of penta-coordinated phosphorus
systems among several common semiempirical methods.51

Second, a QM/MM approach to solvation (i.e., neglecting a
QM description of the solvent) is well suited for the current
application since chemical participation of water (e.g., via
hydrolysis or proton transfer) is not expected to occur.13,25 An
intermediate description including some water in the QM
region in an adaptive fashion (a necessary consequence of
diffusion in a fully solvent-exposed reaction) could potentially
be advantageous, but such an approach is difficult to implement
with smooth gradients suitable for dynamics and not yet widely
available.52 Therefore, at present, a QM/MM model is expected
to be preferable to a full QM description due to the vastly
decreased cost needed to obtain adequate sampling and since
the bulk properties of MM water models are generally superior
to both semiempirical53 and even certain ab initio quantum
models.54

Umbrella Sampling. QM/MM MD umbrella sampling55

trajectories were performed along a mass-weighted atom
transfer coordinate, ξ = (1/2)(rP−O5′ − rP−O2′), where rA−B is
the distance between atoms A and B and the factor of one half

Figure 1. Reaction models for base-catalyzed phosphoryl transfer.
Structural complexity increases from model 1 (2-hydroxy-ethyl ethyl
phosphate) to model 4 (an abasic RNA dinucleotide) to bridge the
gap between the simple alkyl phosphates and the more complex RNA
backbone. Ribose ring-naming conventions are adopted for consis-
tency such that all systems are said to undergo cleavage of the P−O5′
bond, yielding a primary alkoxide (blue), and formation of a P−O2′
bond, yielding a cyclic phosphate (red).
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arises from the leaving group and nucleophile masses being the
same (it should be noted that, in the present case, this has no
effect on the thermodynamics). Although such a coordinate has
been widely used in the literature, especially with regard to
phosphoryl transfer reactions,21−23,47−49,56 a recent study by
Rosta et al. has suggested that the calculated free energy barrier
is potentially sensitive to this choice properly capturing
orthogonal chemical events such as proton transfer.57 This is
not anticipated to be an issue here because the reactions take
place in the high pH regime where the assumption of rapid,
uncoupled deprotonation of the nucleophile is well-justified.25

The orthogonal events are thus entirely structural and not
chemical (i.e., they involve solvent rearrangement).
After an extensive initial equilibration protocol (see the

Supporting Information), production consisted of 1 ns (2 ns for
the dinucleotide system) for each window, with sampling
omitting the first 250 ps for relaxation/equilibration within the
window. The value of the progress coordinate was stored at 0.5
ps intervals for analysis using the multistate Bennett acceptance
ratio (MBAR).58 Approximately uncorrelated data sets were
obtained by subsampling configurations at intervals equal to the
statistical inefficiencies, which were estimated in each
simulation by direct integration of the autocorrelation function
of the progress coordinate using the fast, adaptive integration
scheme of Chodera et al.59

MBAR Analysis and Free Energy Profiles. MBAR
provides a general formalism for reweighting mechanical
observables for estimation in arbitrary thermodynamic states
provided that the relative statistical weight in those states is
known. The MBAR estimator for the expectation of an
observable, ⟨A⟩, that depends only on the configuration, x, is
given by:58
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where M is the number of states, Nm is the number of samples
from state m, fl̂ is the MBAR estimate of the free energy of state
l relative to an arbitrary state (here, f1 ≡ 0), and ul(x) ≡ βUl(x)
is the “reduced potential” characterizing state l.58,60 β and U(x)
are the inverse temperature (for simplicity assumed to be the
same in all states) and potential energy. This expression is quite
general, but in the present context of umbrella sampling, the
unindexed values refer to the unbiased state, and the sample
configurations, xmn, are drawn from M biased states.
One method of estimating the free energy profile, F(ξ), is to

estimate the marginal distribution, ρ(ξ) = ⟨δ(ξ(x) − ξ)⟩; the
free energy profile, up to an additive constant, is then simply
F(ξ) = (−1/β)ln ρ(ξ). Because the δ function is only a function
in the distributional sense, an approximate estimator is needed
for finite sampling. A broad class of such estimators are known
in the statistics literature as kernel density estimators61−64 and
may take the following form:
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The function K is often referred to as a kernel and the
parameter h as the bandwidth. A case more common to the
chemical literature is when K is an indicator function;59,65,66

this returns the familiar histogram estimator, and h is
recognized as the bin width, with an additional parameter
defining the bin center. The results obtained with a histogram
estimator are often qualitatively, and even quantitatively, similar
to those obtained using a kernel density estimator. This general
trend is confirmed in the present work (see the Supporting
Information). The marginal distribution could also be
calculated using other estimators, such as those with a
parametric form,67,68 although this may require slight variation
of the MBAR formalism.
To obtain a kernel-based estimator for F(ξ), eq 2 is

substituted into eq 1, and the logarithm is taken
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As noted above, the additive constant f ̂ can be arbitrarily set to
zero (or any other convenient value). This work employs a
standard normal kernel density estimator with the bandwidth
chosen in each window as twice that given by the data-based
algorithm of Sheather and Jones69 (see the Supporting
Information); hence, the bandwidth is shown to vary among
states.
A more unusual class of observables can be defined as

expectations along a coordinate ξ:

δ ξ ξ
δ ξ ξ
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Note that eq 4 is expressed as a ratio of expectations in an
unconstrained ensemble, rather than as an expectation in a
constrained ensemble (i.e., the momentum conjugate to ξ is
nonzero). Following a similar process as above and recognizing
the denominator as being related to eq 3, the following
estimator is obtained
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Note that in this context f ̂ is not arbitrary, although it could be
made zero in certain contexts.
All of the estimators shown here were implemented in a

locally modified version of the Python MBAR implementation
by Shirts and Chodera (pymbar v2.0).58 Visualization and other
analyses were performed using Visual Molecular Dynamics
(v1.8.7),70 particularly the VolMap plugin (default, unscaled
radii, 0.5 Å resolution).

■ RESULTS
Validation of QM/MM Model and Reaction Coordi-

nate. Both semiempirical quantum methods and approximate
reaction coordinates require some degree of caution when used
in simulations; both can lead to significant deviation from
physical behavior. In addition to the extensive validation and
use in the literature of AM1/d-PhoT in conjunction with the
simple atom transfer coordinate used here,21−23,47−49,56 we
briefly present potential energy profiles comparing AM1/d-
PhoT to standard B3LYP results as well as the reaction
coordinate paths with the optimized stationary points. For
simplicity, the gas-phase 2′-O-transesterification reaction of 2-
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hydroxy ethyl phosphate (similar to model 1 in Figure 1) is
considered. As is clear from Figure 2 and Table 1, AM1/d-

PhoT provides excellent agreement with B3LYP/6-31+G(d), in
both the energy barrier and the geometry and location of
minima and saddle points. In all cases, the approximate reaction
coordinate correctly follows the reaction progress from reactant
to product and predicts stationary points that are similar in
geometry. Interestingly, B3LYP with a slightly smaller basis set
(as one might consider using in QM/MM simulations due to
lower cost) yields a substantial underestimate of the reaction
barrier as compared to both the higher basis set and AM1/d-
PhoT, although the geometries are still comparable. Lastly, it is
worthwhile to note that AM1/d-PhoT was actually trained and
tested on even higher level results [B3LYP/6-311++G-
(3df,2p)//B3LYP/6-31++G(d,p)],20,50 which, at the very
least, explains the existence of the minor deviations in energy
and geometry visible in Figure 2.
Free Energy Profiles and Mechanical Observables.

The principle results of the present work are the free energy

profiles, F(ξ), for each of the specific base-catalyzed reactions
calculated from umbrella sampling simulations. The values of
the progress coordinate, ξ, corresponding to the reactant and
transition state (ξR and ξ⧧, respectively) are determined as:
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The free energy barrier is then calculated as ΔF⧧ = F(ξ⧧) −
F(ξR). Additionally, the averages of select mechanical
observables, ⟨A⟩ξ, and their standard deviations, (⟨A2⟩ξ −
⟨A⟩ξ

2)1/2, were estimated at fixed values of the reaction
coordinate (eq 5).
Throughout this work, the term “reaction model” is used to

refer to a molecule that undergoes a reaction analogous to RNA
transesterification (i.e., contains a phosphodiester that reacts to
form a cyclic phosphate). The reaction models used here are
illustrated and numbered in Figure 1. In QM/MM simulations
of these reaction models, a “force field model” must also be
chosen to describe the (nonbonded) MM and QM/MM
interactions between the (QM) solute and the solvent. Here,
the force field models for the solutes take parameters from
either the AMBER (A) or the CHARMM (C) force fields in
conjunction with solvent (water or water + NaCl) defined by
the TIP3P (3) or TIP4P-Ew (4) water models. A full
simulation model is then given by both a reaction model and
a force field model. For example, an abasic RNA dinucleotide
(reaction model 4 in Figure 1) with AMBER force field
parameters in a simulation cell containing TIP4P-Ew water and
sodium chloride is designated as 4-A4/NaCl. All models will
hereafter be referred to with this nomenclature.

Abasic Dinucleotide Models. Solvent Environments. We
begin by examining several possible solvation models of an
abasic RNA dinucleotide, for which a wealth of experimental
data are available.10,11,13,25 In particular, we examine differences
in the free energy profile due to variations in the water model
and ion atmosphere. The results (Figure 3 and Table 2) show
no statistically significant variation in the reaction barrier or
geometry when the water model is changed from TIP3P to
TIP4P-Ew. The removal of ions (infinite dilution limit) appears

Figure 2. Gas-phase potential energy profiles for the 2′-O-trans-
esterification of 2-hydroxy ethyl methyl phosphate (see the inset) at
the B3LYP/6-31+G(d) (red), B3LYP/6-31G(d) (blue), and AM1/d-
PhoT (green) levels (as implemented in Gaussian 0986 and
AMBER12/AmberTools12,29,37,87 respectively). The approximate
reaction coordinate paths are obtained via constrained optimization
at different coordinate values (using the DL-FIND library88). Crosses
denote the location of optimized minima and transition states. All
energies are relative to the optimized minimum at the relevant level of
theory.

Table 1. Potential Energy Barriers and Select Geometric
Quantities at the Transition State at Different Levels of
Theory Using Multiple Reaction Coordinatesa

ΔE⧧ rP−O5′,TS rP−O2′,TS

B3LYP/6-31+G(d) IRC 42.6 2.49 1.84
ARC 42.5 2.44 1.84

AM1/d-PhoT IRC 42.4 2.33 1.88
ARC 42.3 2.27 1.87

B3LYP/6-31G(d) IRC 35.5 2.56 1.83
ARC 35.5 2.63 1.83

aThe intrinsic reaction coordinate (IRC) is defined so as exactly to
connect the minimum and first-order saddle point. However, the
approximate reaction coordinate (ARC) used in simulations is not
guaranteed to connect either point on the potential energy surface. In
this case, the minimum and saddle point are defined by the reduced set
of coordinates. It should be noted that the ARC values are obtained
under the additional approximation that mΔξ = (1/2)(rP−O5′ −
rP−O2′), with Δξ = 0.1 Å and m as some integer. Energies are in kcal/
mol, and lengths are in Å.

Figure 3. Free energy profiles for reaction model 4 (inset) in different
solvent environments. The experimental value is given for a UpG
dinucleotide (ref 25, 310 K, and ionic strength of 1 M in NaOH/NaCl,
dashed line). To aid visual comparison of barrier heights, the plots are
shifted such that F(ξR) = 0.0. The average error bars (estimated 95%
confidence interval, not shown for clarity) for all of the curves are less
than 0.4 kcal/mol relative to the appropriate reactant state.
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to slightly lower the barrier for both water models by the same
amount, although this difference is very similar in magnitude to
the estimated error (0.8 ± 0.6 kcal/mol).
Solute−Solvent Interaction Models. A necessary aspect of

QM/MM simulations is to select a nonbonded, nonelectro-
static interaction model for QM/MM interactions. Here, as is
generally done, the choice is made from existing standard force
field models. However, these models usually only aim to
describe a fixed valence chemical structure and are thus not
necessarily appropriate for describing chemical reactions.71 As
an investigation of the accuracy of the models used here, we
compare the free energy profiles calculated with different force
field models. Three solute/solvent combinations were exam-
ined using common parameters from the AMBER and
CHARMM nucleic acid force fields and the TIP3P and
TIP4P-Ew rigid water models.72 A summary of these
parameters is given in the Supporting Information. The free
energy profiles largely display the same shape and only slight
quantitative differences (Figure 4 and Table 3). The change
from AMBER to CHARMM Lennard−Jones parameters leads
to a slight lowering of the profile between the reactant and the
transition states by roughly 1 kcal/mol but without changing
the reaction barrier to a statistically significant degree.

Varying the Structural Environment of the Nucleo-
phile and Leaving Group. In our final analysis, a series of
reaction models that undergo phosphoryl transfer were
established to systematically dissect levels of model complexity
(Table 1). In each case, the general reaction scheme is identical
to that of RNA cleavage. The nucleophile is either part of a
simple alkyl chain or ribose ring, and the leaving group is either
ethoxide or 5′-deprotonated ribose. The calculated free energy
profiles (Figure 5) show the barrier magnitudes clustering into
three groups depending on whether or not the nucleophile is
part of a ribose ring and the size of the leaving group (ΔF1⧧ ≫
ΔF2⧧ > Δ F3

⧧ ≫ ΔF4⧧, Table 3). A slightly different
classification is obtained when comparing the location of the
profile minimum (i.e., the reactant state); in this case, the
presence of a ribose ring is the most obvious factor.

■ DISCUSSION

Comparison with Experiment: UpG Dinucleotide. A
primary motivation of this work was the recent publication by
Harris et al. of pH rate and KIE data for the specific base-
catalyzed cleavage of a UpG dinucleotide.25 In that work, a rate
constant of 0.06 ± 0.002 s−1 was extrapolated at “infinite” pH
near biological conditions (310 K, ionic strength of 1 M in
NaOH/NaCl).73 Applying transition state theory (and standard
error propagation) then gives a free energy of activation of 19.9
± 0.02 kcal/mol. This is important because it provides optimal
comparison to the constant protonation state simulations
performed here. Other experimental work has demonstrated
small (<5.0 × 10−4 s−1), but detectable, variations of the rate
constant with respect to nucleobase sequence,14 but we do not
consider these effects in the present work.
As seen in Figure 3 (and Figure 4), in all cases, the

agreement is very good (between 19.9 and 20.8 vs 19.9 kcal/
mol) and within statistical errors. However, one must be wary
that this agreement may, at least to some degree, be
serendipitous. The model parameters related to solvation
(water and solute Lennard−Jones parameters), which are
known to influence barriers in reactions where local changes in
charge state occur along the reaction coordinate as in the
present example, have not been tuned for the specific reaction
considered here.
The most prominent difference between the parameters of

our simulations and those of experiment is the ionic strength.
By necessity, experiments at high pH require high concen-

Table 2. Free Energy Profile Extrema and Select Average Geometric Quantities at Fixed Values of the Reaction Coordinate for
Reaction Model 4 in Different Solvent Environmentsa

Reactant State

model ξR ΔF⧧ ⟨rP−O2′⟩ξR ⟨rP−O5′⟩ξR ⟨θO2′−P−O5′⟩ξR
4-A3/NaCl −1.31 4.27 ± 0.11 1.65 ± 0.06 95 ± 28
4-A3 −1.31 4.27 ± 0.12 1.66 ± 0.06 97 ± 29
4-A4/NaCl −1.30 4.26 ± 0.12 1.66 ± 0.06 94 ± 26
4-A4 −1.31 4.28 ± 0.10 1.66 ± 0.06 90 ± 21

Transition State

model ξ⧧ ΔF⧧ ⟨rP−O2′⟩ξ⧧ ⟨rP−O5′⟩ξ⧧ ⟨θO2′−P−O5′⟩ξ⧧

4-A3/NaCl 0.20 20.8 ± 0.5 1.78 ± 0.08 2.20 ± 0.22 161 ± 8
4-A3 0.18 20.1 ± 0.4 1.78 ± 0.08 2.18 ± 0.22 162 ± 9
4-A4/NaCl 0.20 20.8 ± 0.4 1.78 ± 0.09 2.19 ± 0.22 161 ± 9
4-A4 0.18 19.9 ± 0.4 1.78 ± 0.09 2.15 ± 0.18 162 ± 8

aFor barrier heights, error bars represent approximate 95% confidence intervals; for all other quantities, they represent twice the population standard
deviation. Energies are in kcal/mol, lengths are in Å, and angles are in degrees.

Figure 4. Free energy profiles for reaction model 4 (inset) with
different force field models in the presence of sodium chloride. The
experimental value is given for a UpG dinucleotide (ref 25, 310 K, and
ionic strength of 1 M in NaOH/NaCl, dashed line). To aid visual
comparison of barrier heights, the plots are shifted such that F(ξR) =
0.0. Filled curves represent estimated 95% confidence intervals relative
to the appropriate reactant state.
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trations of NaOH or some other base, usually buffered with a
salt.12,14,25 Such conditions have been known to be problematic
in periodic boundary simulations,74,75 and it was only recently
that models (employed here) were developed that robustly
reproduce experimental bulk behavior.46 However, “local”,
solvation properties, such as binding coefficients,76 are often
not well reproduced by many ion models, at least not on the
time scales accessible in typical simulations. The modified
sodium interactions used here (see the Supporting Informa-
tion) were designed to prevent direct binding of sodium to the
phosphate in a minimally perturbative fashion so at least to
enforce consistency across all umbrella sampling simulation,
which might otherwise sample different bound conformations.
This is justifiable based on the low binding coefficient between
sodium and phosphates,76 but could be problematic at higher
concentrations where the fraction of bound sodium ions is
expected to be non-negligible. Li and Breaker have noted that
the observed rate constant of base-catalyzed RNA cleavage
increased with increasing potassium concentration.14 However,
they were only able to hypothesize that this effect was primarily
due to influence on the pKa of the 2′-hydroxyl group and not
on the intrinsic rate constant, as they were unable to establish
simultaneously high pH and low potassium conditions.
Although the system studied in that work was a DNA 22-mer
with a single embedded RNA dinucleotide, the observed free

energy barriers (21.5−22.5 kcal/mol, 296 K, 3.16 M K+) are
reasonably close to those measured and calculated for a simple
dinculeotide. The results reported here are thus, at the very
least, consistent with that hypothesis. Although it is tempting to
suggest that the hypothesis is supported by the lack of a
catalytic effect when sodium is removed, additional data would
be required, for example (as suggested by a referee), examining
the concentration dependence of the nucleophile pKa or more
rigorously considering sodium binding.

Free Energy Barriers and Solvent Structure. While the
effects of solvation models on free energy profiles are obvious
and easily compared, this does not necessarily make them an
optimal metric for assessing solvation model quality. That is,
there is not necessarily a direct, or even one-to-one,
correspondence between empirical parameters that give the
“correct” free energy barrier and those that are physically
sensible. An ideal model would satisfy both criteria. As a
qualitative check of the TIP3P and TIP4P-Ew water models, we
examine the radial and three-dimensional distribution of water
molecules (or rather the water oxygens) around the
phosphorane transition state (Figure 6). The results for both
models are very similar, with distinct gaps of density around
each of the nonbridge oxygen bond axes as well as parallel to
the breaking and forming bonds (although a clear patch of
density appears along the nonbridge oxygen angle bisector).
Viewing a representative transition statelike configuration
shows tetrahedral coordination of water around each of the
nonbridge oxygens. As would be expected, the water molecules
neatly reside on a density isosurface roughly corresponding to
the first peak of the radial distribution function.
There have been some discussions in the literature

concerning the choice of Lennard−Jones parameters for
atoms in the QM region.71,77,78 Mulholland and co-workers
showed that modified parameters for nucleobases in the
quantum region can improve hydrogen bond geometries with
MM water molecules79 and further demonstrated that changing
between a point charge and ab initio electronic density for
several common rigid water models can lead to unexpected
(and potentially unsatisfying) results.80 By examining extreme
choices of radii and well depths, Riccardi et al. demonstrated
that both a reduction potential and a proton transfer barrier, as
well as hydrogen-bonding interaction energies, display a
systematic dependence on Lennard−Jones parameters.81

However, their conclusion was that physical accuracy (in the
sense of properly balancing enthalpic and entropic effects,
rather than agreement with experimental data or ab initio

Table 3. Free Energy Profile Extrema and Select Average Geometric Quantities at Fixed Values of the Reaction Coordinate for
Reaction Model 4 with Different Force Field Models in the Presence of Sodium Chloridea

Reactant State

model ξR ΔF⧧ ⟨rP−O2′⟩ξR ⟨rP−O5′⟩ξR ⟨θO2′−P−O5′⟩ξR
4-A3/NaCl −1.31 4.27 ± 0.11 1.65 ± 0.06 95 ± 28
4-A4/NaCl −1.30 4.26 ± 0.12 1.66 ± 0.06 94 ± 26
4-C3/NaCl −1.32 4.29 ± 0.12 1.65 ± 0.06 95 ± 23

Transition State

model ξ‡ ΔF⧧ ⟨rP−O2′⟩ξ⧧ ⟨rP−O5′⟩ξ⧧ ⟨θO2′−P−O5′⟩ξ⧧

4-A3/NaCl 0.20 20.8 ± 0.5 1.78 ± 0.08 2.20 ± 0.22 161 ± 8
4-A4/NaCl 0.20 20.8 ± 0.4 1.78 ± 0.09 2.19 ± 0.22 161 ± 9
4-C3/NaCl 0.23 20.3 ± 0.4 1.77 ± 0.08 2.24 ± 0.14 164 ± 10

aFor barrier heights, error bars represent approximate 95% confidence intervals; for all other quantities, they represent twice the population standard
deviation. Energies are in kcal/mol, lengths are in Å, and angles are in degrees.

Figure 5. Free energy profiles for several reaction models (n-A3/NaCl,
where n = 1−4 as in Figure 1). Experimental values are given for a
UpG dinucleotide (ref 25, 310 K, and ionic strength of 1 M in NaOH/
NaCl, dashed line, for comparison to model 4) and model 2 (ref 15,
353 K, and 0.05 N in NaOH, dotted line). To aid visual comparison of
barrier heights, the plots are shifted such that F(ξR) = 0.0. Filled curves
represent estimated 95% confidence intervals relative to the
appropriate reactant state.
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calculations) would be more profitably improved through other
aspects of the QM/MM model.
The present work appears to support the view that simple

tuning of Lennard−Jones parameters is not a fruitful avenue to
producing more physically accurate free energy profiles in QM/
MM simulations. However, that is not to say that the
parameters cannot nontrivially affect the profile or that the
expected change cannot be predicted. In the present case,
although not contrived to be so, the CHARMM potential for
the highly charged nonbridge oxygens has somewhat weaker
repulsive components (both Lennard−Jones ε and A = εRmin

12

coefficients) than the related AMBER parameters (see the
Supporting Information). This would seem to correlate with
the near systematic lowering of the CHARMM free energy
profiles in comparison to the AMBER profiles (Figure 4). That
is, with identical electrostatic interactions, the CHARMM
parameters allow more preferential stabilization of the dianionic
transition state relative to the monoanionic phosphate and
nucleophile reactants since the weaker repulsion is over-
whelmed by electrostatic attraction. It is not clear as to whether
this systematic behavior is desirable. For example, a more
physically correct profile might possess a steeper approach to a
transition state that is lower in energy, a scenario not obviously
attainable by simple modification of the Lennard−Jones
potentials. This suggests the merit of a different approach.
Developments in our group have sought to replace the
empirical Lennard−Jones potential with a more physical
model that inserts directly into the QM/MM self-consistent
field calculation.82,83 This would allow for charge-dependent
exchange and dispersion interactions and would not rely on
static atom type-based parameters. The potential advantage
would arise from nonsystematic changes in the free energy
profile, thereby inserting more of the physical behavior that
Riccardi et al. found lacking.

Dependence of the Barrier on the Ground State.
Among the free energy profiles of the four different reaction
models studied here, the most obvious differences are the
locations of the reactant state and height of the free energy
barrier (Figure 5). A comparison of the average geometries at
all four reactant states (Table 4) shows nearly identical bond
lengths between the phosphorus and the O5′ leaving group but
quite different distances to the O2′ nucleophile. This is
sensible, as the ring structure effectively prevents the secondary

Figure 6. Snapshots from umbrella sampling simulations near the
transition state of model 4-A3 (top) and 4-A4 (bottom). Both
transition state structures consist of a pentacoordinated phosphorane
(orange) with advanced bond formation between the phosphorus and
the 2′-oxygen (upper black line) and bond cleavage between the
phosphorus and the 5′-oxygen (lower black line). This is indicative of
a “late” transition state. Density maps of the water oxygens
[transparent gray, isosurfaces correspond to 4πρbulkg(rmax)] indicate
three distinct areas of low solvation around the phosphorane.

Table 4. Free Energy Profile Extrema and Select Average Geometric Quantities at Fixed Values of the Reaction Coordinate for
Several Reaction Models (n-A3/NaCl, Where n = 1−4 as in 0)a

Reactant State

model ξR ΔF⧧ ⟨rP−O2′⟩ξR ⟨rP−O5′⟩ξR ⟨θO2′−P−O5′⟩ξR
1-A3/NaCl −1.47 4.58 ± 0.14 1.65 ± 0.06 130 ± 42
2-A3/NaCl −1.55 4.74 ± 0.14 1.65 ± 0.06 112 ± 60
3-A3/NaCl −1.32 4.29 ± 0.12 1.65 ± 0.06 100 ± 33
4-A3/NaCl −1.31 4.27 ± 0.11 1.65 ± 0.06 95 ± 28

Transition State

model ξ⧧ ΔF⧧ ⟨rP−O2′⟩ξ⧧ ⟨rP−O5′⟩ξ⧧ ⟨θO2′−P−O5′⟩ξ⧧

1-A3/NaCl 0.23 31.2 ± 0.5 1.78 ± 0.09 2.22 ± 0.24 166 ± 9
2-A3/NaCl 0.18 27.7b ± 0.6 1.77 ± 0.08 2.20 ± 0.24 162 ± 9
3-A3/NaCl 0.24 26.2 ± 0.4 1.77 ± 0.08 2.26 ± 0.33 164 ± 10
4-A3/NaCl 0.20 20.8c ± 0.5 1.78 ± 0.08 2.20 ± 0.22 161 ± 8

aFor barrier heights, error bars represent approximate 95% confidence intervals; for all other quantities, they represent twice the population standard
deviation. Energies are in kcal/mol, lengths are in Å, and angles are in degrees. bΔGexpt

⧧ = 28.5 kcal/mol (ref 15). cΔGexpt
⧧ = 19.9 kcal/mol (ref 25).

See Figure 5 for details.
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alkoxide from getting too far from the negatively charged
phosphate, even though it would be electrostatically favorable
to do so. However, when no ring is present (as in models 1 and
2), much larger separation is possible. In this case, the barrier to
phosphoryl transfer is effectively increased by the added
conformational change. The sizable difference in the reaction
barriers of models 1 and 2 (3.5 ± 0.8 kcal/mol) is likely
explained by differing solvation of the nucleophiles. That is, in
principle, the additional methyl substituent on model 2 should
stabilize the alkoxide more than in model 1, thereby lowering
the energy of the (deprotonated) reactant state and raising the
barrier. However, this is clearly not the case. The dominating
effect is the increased solvent exposure of the primary alkoxide
due to the presence of fewer substituents. It therefore
experiences a higher energetic cost when moving toward the
transition state and thus a higher reaction barrier.
Near the transition state, all four models are strikingly similar

both in the shape of the free energy profile and in the average
geometry (Table 4). The exception to this is model 3, which
has a slightly longer bond breaking distance (rP−O5′), as well as
a “looser” bonding environment, as indicated by increased
fluctuations. This variation is not enough, however, to change
the classification of the transition state; the progressed bond
breakage in all of the models clearly indicates a “late” transition
state characterized by a nearly fully formed bond with the
nucleophile and a nearly fully broken bond to the leaving
group. However, unlike the difference between the reaction
barriers of models 1 and 2, the difference between models 3
and 4 (5.4 ± 0.6 kcal/mol) seems more anomalous. The
obvious departure point for examining this is the nature of the
leaving groups. In the current AM1/d-PhoT QM model, the
gas-phase proton affinities of these compounds are quite
dissimilar (ΔΔHPA = ΔHPA,EtOH − ΔHPA,5′‑ribose ≈ 18 kcal/mol)
and indicative of a higher cost to remove the ethoxide leaving
group (if one is willing to assume that the solvation properties
are not too different). This rather dramatic difference also
seems to be semiquantitatively in line with high-level density
functional theory (DFT) calculations84 (ΔΔHPA ≈ 10−16
kcal/mol). However, a DFT model using continuum solvation
similar to 3 was also recently shown to give a free energy barrier
in very close agreement with that for an RNA dinucleotide,85

implying that the present result is in fact anomalous, but for
reasons other than the proton affinity difference. Because of the
reasonable agreement of models 2 and 4 with experimental
results, we suspect that there is an imbalance of solvent effects
when the nucleophile is large and the leaving group is small.
This is in line with the clear importance of solute/solvent and
QM/MM interactions and allows for the results for model 3 to
be seen as anomalous.

■ CONCLUSION
A significant aspect of understanding enyzmatic mechanism is
understanding the nature of rate enhancement over the native
(solution) mechanism. In this work, we have studied several
variants of nonenzymatic phosphoryl transfer, a reaction
catalyzed by a wide range of proteins and the most ubiquitous
among known ribozymes. Using QM/MM MD umbrella
sampling simulations, the free energy profiles were calculated
along a simple atom transfer coordinate.
The calculated barrier for an abasic dinucleotide agrees

almost exactly with the experimental result for the UpG
dinucleotide under similar conditions. Analysis of the transition
state structure indicates a “late” transition state, also in

agreement with inferences from the experimental KIEs.
Although ionic conditions are a necessity of most high pH
experiments, removing all monovalent ions did not lead to any
significant change in the barrier. However, it should be noted
that the model used here effectively precluded the possibility of
direct coordination of cations to the phosphate. The obvious
corollary to this result is that changes in the rate constant
observed in conjunction with changes in ionic environment are
likely due to the types of coordination neglected here. Such
coordination is likely to be electrostatically favorable but will
come at the cost of disrupting extensive hydrogen bond
networks surrounding the dianionic transition state if it occurs
at the nonbridge oxygens.
The conclusions made here are strengthened by extensive

testing of the available QM/MM models, including the
commonly used TIP3P and TIP4P-Ew water models, as well
as Lennard−Jones parameters from the AMBER FF10 and
CHARMM27 force fields. Changing any one of these aspects of
the model also does not lead to substantial change in the
calculated reaction barrier. This does not suggest that these
parameters are not important, as it has been demonstrated
previously by our group and others that free energy profiles
involving local changes in charge are highly sensitive to
solvation and Lennard−Jones parameters. Rather, the combi-
nations of parameters examined here appear to be similarly
balanced in terms of overall solvation.
The structural complexity of the leaving group and

nucleophile has a subtle effect on the structure of the transition
state and a significant effect on the magnitude of the free energy
barrier. This is most evident according to the presence or
absence of a ribose ring, which acts to constrain the degree of
separation between the deprotonated nucleophile and the
monoanionic phosphate in the reactant state. Lastly, improper
balancing of model pKa values for the nucleophile and leaving
group can lead to abnormally disparate reaction barriers and
should be considered when embedding QM regions into larger
systems such as ribozymes. Next-generation models that are
able to consider adjustments of nonelectrostatic nonbonded
interactions as a function of local charge are likely to
considerably improve the robustness of QM/MM simulations
for chemical reactions or processes that involve charge
migration or change of local charge state.
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