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Hidden specificity in an apparently nonspecific
RNA-binding protein
Ulf-Peter Guenther1,2, Lindsay E. Yandek2, Courtney N. Niland2, Frank E. Campbell1, David Anderson3, Vernon E. Anderson2,
Michael E. Harris2 & Eckhard Jankowsky1,2

Nucleic-acid-binding proteins are generally viewed as either specific
or nonspecific, depending on characteristics of their binding sites in
DNA or RNA1,2. Most studies have focused on specific proteins,
which identify cognate sites by binding with highest affinities to
regions with defined signatures in sequence, structure or both1–4.
Proteins that bind to sites devoid of defined sequence or structure
signatures are considered nonspecific1,2,5. Substrate binding by these
proteins is poorly understood, and it is not known to what extent
seemingly nonspecific proteins discriminate between different bind-
ing sites, aside from those sequestered by nucleic acid structures6.
Here we systematically examine substrate binding by the apparently
nonspecific RNA-binding protein C5, and find clear discrimination
between different binding site variants. C5 is the protein subunit of
the transfer RNA processing ribonucleoprotein enzyme RNase P
from Escherichia coli. The protein binds 59 leaders of precursor
tRNAs at a site without sequence or structure signatures. We mea-
sure functional binding of C5 to all possible sequence variants in its
substrate binding site, using a high-throughput sequencing kine-
tics approach (HITS-KIN) that simultaneously follows processing
of thousands of RNA species. C5 binds different substrate variants
with affinities varying by orders of magnitude. The distribution of
functional affinities of C5 for all substrate variants resembles affinity
distributions of highly specific nucleic acid binding proteins. Unlike
these specific proteins, C5 does not bind its physiological RNA targets
with the highest affinity, but with affinities near the median of the

distribution, a region that is not associated with a sequence signature.
We delineate defined rules governing substrate recognition by C5, which
reveal specificity that is hidden in cellular substrates for RNase P.
Our findings suggest that apparently nonspecific and specific RNA-
binding modes may not differ fundamentally, but represent distinct
parts of common affinity distributions.

The term ‘nonspecific’ is widely used to describe proteins that bind
DNA or RNA substrates at sites without apparent sequence or struc-
ture signatures1,2,5. Although nonspecific proteins are numerous and
have many important biological roles, a key open question is whether
the absence of defined recognition elements in nucleic-acid-binding
sites reflects largely indiscriminate substrate binding, or whether and
how nonspecific proteins discriminate between different binding sites.
To answer this question, we systematically examined substrate binding
for the apparently nonspecific RNA-binding protein C5, the protein
subunit of RNase P from E. coli. RNase P is a ribonucleoprotein enzyme
that removes 59 leader sequences from precursor tRNA (ptRNA) in
bacteria7 (Fig. 1a). The C5 protein promotes ptRNA processing by
RNase P8, and contributes to ptRNA binding by associating with six
consecutive nucleotides in the 59 ptRNA leaders9,10 (Fig. 1a, b). This
binding site displays no apparent sequence or structure signatures in
the 87 genomically encoded E. coli ptRNA leaders (Extended Data Fig. 1).

To determine whether and how C5 discriminates between different
binding sites, we measured functional binding of C5 to all sequence
variants in its cognate ptRNA site. Here, functional binding reflects
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Figure 1 | Processing of precursor tRNA with randomized leader sequences.
a, ptRNA processing reaction by RNase P. b, Structure of the RNase P
holoenzyme9. c, Sequences of non-initiator ptRNAMet leaders (reference, black;
randomized, red). The tRNA body is omitted for clarity. The arrow indicates
the cleavage site. d, Time courses of RNase P processing of ptRNAMet82 (black) and
ptRNAMet(-3-8N) (red), in the presence (filled circles), and in the absence (open

circles) of C5. The solid lines are fits to the integrated rate equation for a biphasic
first order reaction. e, Polyacrylamide gel electrophroresis (PAGE) of reactions
processed for Illumina sequencing. f, Distributions of species for individual
time points, ranked from fastest to slowest. The y axis marks the change in read
numbers for each substrate species at the reaction time indicated, normalized to
the number of reads at t 5 0. Colours emphasize the different reaction times.
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productive substrate association in an ongoing enzymatic reaction. It is
expressed by the specificity constant (kcat/Km, the ratio of turnover
number and Michaelis constant) for a given substrate variant, which
measures biologically relevant specificity11,12. To determine functional
binding of C5 to all substrate variants simultaneously, we generated
non-initiator precursor tRNAMet with a randomized C5-binding site
(ptRNAMet(-3-8N), Fig. 1c), and followed the processing reaction of this
substrate population (Fig. 1d). Reactions were conducted with excess
ptRNAMet(-3-8N). Under these multiple turnover conditions all sequence
variants compete for C5 association, and the relative reaction rate for
each variant reflects functional binding13.

The time course for the reaction of the randomized ptRNAMet(-3-8N)

population differed markedly from the time course of ptRNAMet82

with a genomically encoded leader (Fig. 1d). This difference indicates
that sequence variation affects functional binding by C5. Removal of
C5 slowed the reaction rate as expected and greatly diminished the kinetic
differences between the substrates with the genomically encoded and
the randomized leaders (Fig. 1d).

To determine reaction rate constants for the individual substrate
variants, we isolated remaining substrates at various reaction times and
measured the distribution of the RNA species by Illumina sequencing
(Fig. 1e, f, Extended Data Fig. 2 and Extended Data Table 1). We used
primers with degenerate barcodes to detect biased amplification of
sequences during the PCR (Extended Data Fig. 2 and Extended Data
Table 1). Of the 4,096 sequence variants, 2,900 showed unbiased amp-
lification and were retained for further analysis. The distribution of
sequence variants changed over the reaction time, revealing distinct fast-
and slow-reacting species (Fig. 1f). These data demonstrate that C5
discriminates between different sequence variants, despite the lack of
sequence signatures in genomically encoded E. coli ptRNA leaders.

We calculated a relative processing rate constant (krel) for each RNA
variant, using internal competition analysis, developed for the evalua-
tion of kinetic isotope effects (Extended Data Fig. 3)13–15. The krel value
is the ratio between the kcat/Km values for the given sequence variant
and our reference sequence, the physiological leader AAAAAG. The rela-
tive rate constants for all sequence variants describe C5 binding to the
entire sequence space of the six-nucleotide recognition site. Our approach
to measure functional binding of large numbers of substrates during an
ongoing reaction adds a kinetic dimension to the scope of high-throughput
sequencing experiments with randomized RNA populations3,4,16,17. We
therefore propose to term our method high-throughput sequencing
kinetics (HITS-KIN). The approach is applicable to other systems for
kinetic analysis of next generation sequencing data.

For the ptRNA processing reaction with C5, the HITS-KIN method
revealed a range of relative rate constants spanning several orders of
magnitude (Fig. 2a). Obtained relative rate constants were highly repro-
ducible in independent experiments (Fig. 2b). We also validated rate con-
stants by direct kinetic measurements of selected sequence variants (Fig. 2c
and Extended Data Fig. 4). Together, these data show that the HITS-KIN
approach provides reproducible and accurate relative rate constants.

We next plotted the number of sequence variants processed at a
given range of relative rate constants (Fig. 2d). The resulting histogram
revealed that a significant number of sequence variants reacted faster
than the physiological leader reference (krel . 1). Numerous sequence
variants reacted slower (krel , 1). These observations indicate that phy-
siological leader sequences of non-initiator ptRNAMet are not preferen-
tially bound by C5. Removal of C5 greatly contracted the range of relative
rate constants, highlighting the impact of C5 on functional substrate
binding and on the characteristic affinity distribution (Extended Data
Fig. 5).

Most notably, the shape of the distribution of functional C5 affini-
ties closely resembled affinity distributions of highly specific DNA-
binding proteins, for which large numbers of sequence variants had been
examined18–21 (Fig. 2d). This degree of similarity between the non-
specific C5 and specific proteins was unexpected, given the absence
of sequence signatures in the C5 binding site. For specific proteins, the

cellular substrates that define binding site signatures are found at the
high-affinity tail of the distribution18,19 (Extended Data Fig. 6a, b). Remark-
ably, this high-affinity region for C5 also shows a clear sequence signature
(Fig. 2e, f), as seen for specific proteins. In stark contrast to specific proteins,
the C5 sequence signature does not correspond to the physiological
binding sites on the non-initiator ptRNAMet. None of the genomically
encoded non-initiator ptRNAMet leader sequences falls into this fastest-
reacting fraction (Fig. 2d). For both C5 and specific proteins, no sequence
signatures were detected for other regions of the sequence spectrum
(Extended Data Fig. 6). Our results therefore reveal remarkable simi-
larities between sequence discrimination by the apparently nonspecific
C5 and by specific DNA-binding proteins. At the same time, our data
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Figure 2 | Discrimination of C5 between different precursor tRNAMet

leader sequences. a, Relative rate constants (krel) for processing of all ptRNA
leader sequence variants, ranked from slow to fast. Relative rate constants are
averaged from four values (two time points of two experiments) and shown for
only sequences where data from all four measurements passed quality control
criteria (Extended Data Table 1). The line at krel 5 1 marks the reference
sequence. b, Correlation of relative rate constants from two independent
biological replicates (red line, linear fit through the data; R2, correlation
coefficient). c, Correlation between relative rate constants obtained by PAGE
and by the HITS-KIN approach for selected sequence variants. Error bars
represent the s.d. of three or more individual measurements. d, Distribution of
relative rate constants for processing of ptRNAMet(-3-8N) sequence variants by
C5 (black) and apparent affinities for DNA binding by the transcription factor
Arid3a, indicated as Z-scores based on published microarray data18. The
Z-score is not identical to krel values, but accurately reflects affinity-based
ranking of all sequences18 (triangles, krel values for genomic leader sequences of
ptRNAMet). e, Plot of all sequence variants ranked from slowest to fastest
processed. The bracket marks 0.3% of sequence variants with the largest relative
rate constants. f, Sequence logo for this fraction.
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highlight a major difference: sequences bound with the highest affinity
do not represent physiological substrates for C5, but for specific DNA-
binding proteins with known affinity distributions.

To delineate sequence determinants that govern substrate recogni-
tion by C5, we fit the distribution of rate constants to models of increa-
sing complexity and determined which percentage of the measured
variance in the rate constants was explained by the respective model.
Our simplest model considered only the number of a given nucleotide
in the binding site, regardless of position. This model explained 29% of
the variance in the measured rate constants (Fig. 3a, left). The model
suggested favourable binding of sequences rich in adenine and uracil
(Extended Data Fig. 7a). As A–U base pairs are thermodynamically less
stable than G–C base pairs, we speculate that the variance explained by
this model reflects in part the propensity of the leader to form transient
structures with other parts of the ptRNA22, which potentially compete
with C5 binding. Although competing structures are generally expected
in RNAs with more than two dozen nucleotides23, the relatively low
correlation of the model with measured rate constants suggests that
competing RNA structures have only limited impact on C5 binding for
the majority of sequences.

We next considered both base identity and position in the binding
site. This model, a traditional position weight matrix21, explained 39%
of the variance in measured rate constants (Fig. 3a, middle, and Extended
Data Fig. 7b). This modest improvement over the previous model indi-
cated that the position of individual bases in the binding site impacted C5
binding only to a limited extent. However, the position weight matrix
assesses the bases independently of each other21. To probe inter-dependence
of the bases in the binding site, we used a model accounting for func-
tional coupling between two bases. This model explained 68% of the
variance in measured rate constants (Fig. 3a, right). The strongest
couplings were detected between neighbouring bases (Fig. 3b).

The observed strength of the couplings between adjacent bases did
not scale with energies expected to overcome stacking of the respective
bases22. This finding suggests that the couplings result from interac-
tions of the RNA with C5, not primarily from inherent RNA confor-
mations. Functional couplings between more than two base positions,
assessed by neural network analysis, only modestly improved correla-
tion between predicted and measured data, and explained 76% of the
variance (Extended Data Fig. 8). Thus, functional couplings between
adjacent bases exert the largest influence on C5 binding. The limited
resolution of the structural model of RNase P protein bound to RNA9

currently precludes structural interpretation of these effects. However,
we note that functional coupling between neighbouring bases also
contributes markedly to the binding of several specific transcription
factors to DNA21,24,25.

Taken together, the examination of the functional binding data with
models of increasing complexity reveals defined rules for substrate bind-
ing by C5. The data demonstrate that discrimination between different
substrates, and thus specificity, is an inherent property of C5. However,

this specificity is ‘hidden’ in the cellular RNA targets. This observation
raises the question of why the specificity in C5 has not led to selection of
ptRNA leaders with high-affinity sequence signatures, as seen in proteins
with canonical specificity18–21. Our data suggest a further-reaching utility
of specificity. C5 uses its inherent specificity, as reflected in the rules for
substrate recognition, to enable binding of diverse substrate variants
with similar functional affinity. This enables RNase P to process these
diverse substrates at a similar rate, which may be required for cellular
tRNA homeostasis26.

The marked similarities between affinity distributions of C5 and
those of highly specific transcription factors also raise questions about
the concept of ‘nonspecific’ RNA-binding proteins. Given that RNA
binding requires a protein interface to establish interactions with the
RNA, certain RNA sequence or structure variants conceivably fit this
interface better than others. Genuine nonspecificity may therefore be
difficult to accomplish, even for proteins binding exclusively to the RNA
backbone, because sequence differences impact backbone geometry27.
Differences between substrate variants may become smaller for proteins
that bind to the backbone of RNA duplexes, which show less structural
heterogeneity, but are nevertheless dynamic28.

Preferences of apparently nonspecific proteins for certain binding-
site variants are thus likely to impact substrate selection, unless compen-
sation for these preferences exist. Compensation may arise from varying
concentrations of RNA species, rate-determining metabolic steps other
than substrate binding, or a combination of these. Alternatively, a single
protein could bind multiple distinct substrate regions while thermody-
namically compensating for the preferences at each region, as shown for
uniform binding of diverse aminoacyl-tRNAs to elongation factor Tu29.

Although hidden specificity remains to be revealed for other proteins,
the findings for C5 indicate that absence of sequence or structure sig-
natures in cellular binding sites does not reflect an inability to discrimi-
nate between different RNA binding sites. At the same time, the data
highlight the key difference between the hidden specificity of C5 and
proteins that are specific in a canonical sense. For proteins with canonical
specificity, cellular substrates seem to fall mainly into the high-affinity
region of the sequence distribution. This region is associated with sequence
signatures, even for C5. Biological substrates for C5 bind near the median
of the affinity distribution, which does not produce a sequence signature.
These findings suggest that specific and nonspecific binding modes
may not fundamentally differ, but represent distinct parts of similar
affinity distributions. Our data therefore have potentially broad impli-
cations for RNA binding by proteins thought to be nonspecific, inclu-
ding many RNases, RNA helicases or the La-protein.

METHODS SUMMARY
ptRNAs and ptRNAMet with randomized leader sequences were produced by in vitro
transcription from PCR-generated templates. RNase P processing reactions were
carried out with 1mM ptRNA and 5 nM RNase P holoenzyme (equimolar RNase P
RNA and C5). Product and unreacted ptRNA were separated by PAGE. Complementary
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DNA libraries for Illumina sequencing were prepared from unreacted ptRNA at
each given time point. Primers with degenerate barcodes were used to detect biased
PCR amplification of certain sequences. Sequencing was performed on an Illumina
GA2. Relative rate constants krel for individual substrate variants were calculated
from changes in the distribution of substrates over time, using a multiple turnover
reaction scheme for competitive substrate kinetics, which was extended to several
thousand substrates. Computational modelling for the rules of substrate discrim-
ination was performed by ordinary least squares regression of the matrix of values
for ln(krel) for each sequence variant according to four models of increasing com-
plexity. The quality of the different models was judged by the correlation coefficient
between a data set calculated from values obtained from the regression analysis and
the set of experimentally obtained values for ln(krel).

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS
E. coli RNase P holoenzyme and RNase P RNA were prepared and tested for
integrity as described previously31,32. The non-initiator ptRNAMet substrates contain
8 nucleotides of the genomically encoded leader (Fig. 1c), and 21 nucleotides at the
59 end for Illumina sequencing (Extended Data Fig. 2). These RNAs were gene-
rated by in vitro transcription from DNA generated by PCR amplification of the
ptRNAMet82 gene (PMET82). The forward primer introduced the T7 promoter
sequence and the additional 21 nucleotides (Extended Data Fig. 4). The ptRNAMet(-3-8N)

substrate population with randomized leader sequence N(23) to N(28) was gene-
rated using a primer with this region randomized (NNNNNN).

The following PCR primers were used (C5 binding site is underlined):
ptRNAMet82F, 59-TAATACGACTCACTATAGGGAGACCGGAATTCAGAT

TGATGAAAAAGATGGCTACGTAGCTCAGTTGG-39; ptRNAMet82FEco, 59-
GGGTTAACCTAATACGACTCACTATAGGGAGACCGGAATTCAGATTGA
TGAAAAAGATGGCTACGTAGCTCAGTTGG-39; ptRNAMetFrandomized, 59-TA
ATACGACTCACTATAGGGAGACCGGAATTCAGATTGATGNNNNNNAT
GGCTACGTAGCTCAGTTGG-39; ptRNAMet82R, 59-TGGTGGCTACGACGG
GATTC-39; ptRNAMet82RBbs, 59-CGGGATCCGAAGACAGTGGTGGCTACGA
CGGGATTC-39. DNA templates for substrates L1 to L5 (Fig. 2c) contained the
following C5-binding sites: L1, TTATAT; L2, TCAGAC; L3, ATTCAA; L4, CG
TCAG; L5, CTCCTG.

PCR protocol: 95 uC, 2 min; 30 cycles (95 uC, 30 s at 55 uC, 45 s at 72 uC), final
extension at 72 uC for 5 min.

The PCR products (142 base pairs (bp)) were extracted with phenol and chlo-
roform and recovered by ethanol precipitation. PCR products for the ptRNAMet82

DNA were amplified with the ptRNAMet82FEco and ptRNAMet82RBbs primers, which
include BamHI and EcoRI restriction sites. The PCR product was digested with these
enzymes and cloned into pUC19. The resulting plasmid, pPTRNAmetT(121), was
digested with BbsI to yield the template for in vitro transcription with the correct
ptRNAMet82 39 end.

In vitro transcription was performed in a volume of 400ml with 15–20mg of PCR
template or cloned plasmid DNA template, 400 enzyme units of T7 RNA poly-
merase (Ambion), 0.01 unit yeast pyrophosphatase, 0.5 mM NTP, and the reaction
buffer supplied by the polymerase manufacturer was supplemented with 2.5 mM
MgCl2. Reactions were incubated overnight at 37 uC. The full-length RNA was
purified on 8% denaturing PAGE, as described previously31,32.

Recovered ptRNAs were dephosphorylated using calf intestinal phosphatase and
59 end labelled with 32P using c32P-ATP and T4 polynucleotide kinase according to
standard methods. For the HITS-KIN experiments, the RNA was uniformly labelled
with c32P-GTP in the in vitro transcription (NTPs 100mM).
RNase P processing reactions. Multiple turnover reactions were performed in
buffer containing 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 17.5 mM MgCl2, 0.005%
Triton X-100, with 1mM ptRNA and 5 nM E. coli RNase P holoenzyme (1:1 ratio of
P RNA and C5 protein). Equal volumes (40ml) of enzyme and radiolabelled
substrate at two times their final concentrations were prepared in reaction buffer
and combined to initiate the reaction. Aliquots (5ml) were removed at the times
indicated for 5% to 30% substrate conversion. The reactions were quenched by
addition of a solution (5ml) containing formamide and 100 mM EDTA. ptRNA
and reaction products were resolved on 10% denaturing PAGE (Fig. 1e). The
fraction substrate converted to product was determined with a PhosphorImager
(GE) and the ImageQuant software. Subsequently, precursor bands in the gel were
located by exposure to X-ray film. The bands were excised and eluted as described
previously32. Eluted RNA was extracted with phenol and chloroform, and recovered
by ethanol precipitation.

Relative rate constants for individual non-initiator ptRNAMet substrates (L1–
L5, Fig. 2c, for defined sequences of C5 binding site, see above) were determined in
reactions containing 1mM of the pool of randomized ptRNAMet(-3-8N), spiked with
trace amounts (,0.1 nM) of the respective radiolabelled L1–L5 substrate. Time
courses of the reactions were followed as described above and apparent rate con-
stants were determined from plots of product accumulation over time32. As out-
lined below, the ratio of the observed rate constants is krel because in competition
kinetics the substrates at the concentrations used behave as V/K systems. V/K is
proportional to kcat/Km at a given substrate concentration.
DNA library preparation. Complementary DNA libraries for Illumina sequencing
were prepared from unreacted ptRNA, recovered from PAGE as described above.
RNA was resuspended in 25ml H2O, and concentration was determined with a
Beckman ultraviolet spectrophotometer. First-strand synthesis was performed with
4 pmol of this RNA in a 20-ml standard reaction containing 1mM reverse transcrip-
tion primer (Extended Data Fig. 2a) and 0.5ml Superscript III (Invitrogen) for 10 min
at 42 uC, 40 min at 50 uC and 20 min at 55 uC. The reaction was stopped by incubation
at 95 uC for 5 min. The generated cDNA was diluted (1:300). One microlitre of this
solution was used in PCR reactions with 1.25 enzyme units Herculase polymerase

(Stratagene), reverse transcription primer (0.5mM) and indexed forward primer
(0.5mM) for 2 min at 98 uC, followed by 19 cycles (15 s at 98 uC, 20 s at 59 uC, 20 s at
72 uC), and incubation for 10 min at 72 uC. PCR products were purified with P6
microcentrifuge columns (Bio-Rad) and analysed by agarose gel electrophoresis
(Extended Data Fig. 2b). The solutions were pooled in an equimolar fashion and
sequenced in a single lane of an Illumina GA2, according to the manufacturer’s
protocols. Primer sequences were as follows: reverse transcription primer, 59-CA
AGCAGAAGACGGCATACGATGGTGGCTACGACGGGAT-39; indexed forward
primers (NN, degenerate barcode; underlined letters, index barcode), 59-AATGA
TACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCTNNATCGGGAGACCGGAATTCAGATTG-39; 59-AATGATACGGCGA
CCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNG
ATGGGAGACCGGAATTCAGATTG-39; 59-AATGATACGGCGACCACCGA
GATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTNNCGAGGGAG
ACCGGAATTCAGATTG-39; 59-AATGATACGGCGACCACCGAGATCTACA
CTCTTTCCCTACACGACGCTCTTCCGATCTNNTCCGGGAGACCGGAAT
TCAGATTG-39.
Processing of Illumina sequencing data. All reads were aligned to the sequence
of nucleotides 6–29 of the read (Extended Data Fig. 2c), permitting one mismatch
but no gaps, using the basic local alignment search tool (BLAST). Aligned reads
were then sorted according to their index tag, and separated into different files. For
corresponding statistics, see Extended Data Table 1.

We probed possible over- or under-amplification of certain sequences during
the PCR using the two-nucleotide degenerate barcode (positions 1 and 2, Extended
Data Fig. 2c). Correctly amplified sequences show a distribution of degenerated
barcode nucleotide combinations that is identical, within error, for all leader species.
Both over- and under-amplification cause deviations from this distribution. We
determined the distribution of all nucleotide combinations at positions 1 and 2 for
each leader sequence. The expected distribution of the two-nucleotide degenerate
barcode was calculated from all 4,096 leader sequence variants. Then, chi-squared
tests were performed for each leader variant. Sequences for which the threshold
exceeded a. 0.05 were excluded from further analysis (between 4% and 10% of
the sequence variants, Extended Data Table 1).
Determination of relative rate constants krel from Illumina sequencing data.
Rate constants for individual substrate variants were calculated from time-dependent
changes of the distribution of substrate variants (Fig. 1f), using a multiple turnover
reaction scheme for competitive alternative substrate kinetics15,33 (Extended Data
Fig. 3).

The observed rate constant (v1...i) for processing of one individual substrate (S1)
is proportional to the fraction of total enzyme that binds this substrate to form a
complex (ES1) that further reacts to form product and regenerates free enzyme
according to:

v1~V1EfES1 ð1Þ

Here, V1 is the first order rate constant for the reaction of ES1 to yield free product
(Extended Data Fig. 3), fES1 is the fraction of total (active) enzyme (E) in the ES1

complex. Additional substrates act essentially as competitive inhibitors of the
multiple turnover reaction. Accordingly, v1 is:

v1~

V1E
S1

K1

1z
Pn
i~1

Si

Ki

� � ð2Þ

Variables are defined in Extended Data Fig. 3. By extension, v2 is:

v2~

V2E
S2

K2

1z
Pn
i~1

Si

Ki

� � ð3Þ

As the denominators of equations (2) and (3) are the same, the ratio of two
observed rate constants (v1/v2) therefore becomes:

v2

v1
~

V
K

� �
2

V
K

� �
1

S2

S1

� �
ð4Þ

We define the parameter krel as the ratio of the V/K values of a given substrate (S2)
to a reference substrate (S1):

V
K

� �
2

V
K

� �
1

~krel ð5Þ
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and thus:

v2

v1
~krel S2

S1

� �
ð6Þ

The reference substrate S1 is the genomically encoded leader sequence for the
ptRNAMet82 (AAAAAG)34. Thus, krel . 1 for a ptRNA variant that reacts faster
than the reference substrate (Vi/Ki. V1/K1), whereas krel , 1 indicates a slower
reaction (Vi/Ki, V1/K1).

Equations (4) to (6) highlight three important points regarding the use of
internal competition kinetics for the analysis of deep sequencing data. First, both
substrates will behave as V/K systems35,36 regardless of the substrate concentra-
tions. This is true even if one or both concentrations are greater than the respective
values for Km, because both substrates compete for free enzyme13,15. Second, the
ratio of observed rate constants and the ratio of V/K values are independent of
enzyme concentration, provided the steady state conditions are maintained. Third,
the reaction step that limits V/K does not have to be the same for both substrates.

Integration of equation (5) over time ensures validity of the expression for any
reaction interval13, and we obtain:

krel~

ln
S2

S2,0

� �

ln
S1

S1,0

� � ð7Þ

Here, S1,0 and S2,0 are the initial concentrations of the two substrates. S1 (reference
substrate) and S2 (the specific sequence variant) are the respective concentrations
at a defined time interval. The quantities that can be measured are the relative
concentrations of S2 and S1; that is, S2/S1 and S2,0/S1,0. We define these quantities as
the ratios (R) between substrates:

Ri~
Si

S1
ð8Þ

Ri,0~
Si,0

S1,0
ð9Þ

The initial mole fractions (Xi) of Si are defined as:

Xi~
SiPn

i~1
Si,0

ð10Þ

Si,0 is the concentration of a given substrate at the reaction start, Si is the concen-
tration at a time point where the overall reaction amplitude for the entire substrate
population has reached the value f. We obtain:

f ~1{
Pn
i~1

Xi ð11Þ

Analogous to the treatment of kinetic isotope effects using internal competition in
a previous publication14, we insert the defined mole fractions and substrate ratios
(equations (8) to (11)) into equation (11). This is rearranged, and the result is the
following equation:

Si

Si,0
~

1{fð Þ
Ri,0

Ri

Xn

i~1

Ri

Ri,0
Xi

� � ð12Þ

We substitute this term in equation (7), and consider that substrate ratios at time
zero equal one.

R1

R1,0
~1 ð13Þ

We obtain the following expression for the relative rate constant for any substrate,
Si:

krel
i ~

ln
1{fð Þ

Ri,0

Ri

Xi

1

R
R0

X

� �

ln
1{fð ÞPi
1

R
R0

X

ð14Þ

Here, R is the ratio of each sequence (including S1) to S1, R0 is the ratio of each
variant to S1,0 at the reaction start, and X is the mole fraction for a given sequence
variant. The method outlined above is applicable to any technique capable of
determining substrate ratios (for example, mass spectrometry, isotopic counting,
chromatography).

We computed R and X values for each substrate using the filtered number of
counts for each variant, obtained from Illumina sequencing (Supplementary Table 2).
The overall fraction of reacted product was determined by PhosphorImager ana-
lysis of the PAGE (Fig. 1e).

In principle, values for krel can be computed at any value of f. However, there is
little relative change in the number of sequencing reads at early time points. However,
at early time points the highest resolution is seen for the fastest reacting variants,
while krel values for slower sequences are optimally measured at greater values of f.
Values of f 5 0.1 to 0.3 provided reliable measurements for most sequence variants.
Nevertheless, for slow-reacting variants small changes in the number of sequen-
cing reads at early time points are occasionally exceeded by sampling error in the
number of reads, resulting in negative values for krel.
Computational modelling of rules for substrate discrimination. With regard to
nucleotide type, this model considers the number of each nucleobase in the bind-
ing site, regardless of its position. For each sequence variant the corresponding
value of ln(krel) (Fig. 3a) is described by a set of linear coefficients (b), according to
the equation:

ln krel
� �

~b0zbA.AzbC.CzbG.G ð15Þ

A, C and G are the number of the respective nucleobases (explanatory value). The
number of U follows from these variables and is therefore not included (bU 5 0).
Equation (15) describes the average increase in ln(krel) corresponding to a one-unit
increase in the explanatory variable. For example, for each additional C in the
sequence, the ln(krel) increases by bC.

Linear coefficients for the entire data set were computed by ordinary least squares
(OLS) regression, using the open-source statistical package R (http://www.r-project.
org/) and the exact equation:

bN~ XTXð Þ{1
XTY ð16Þ

Here, Y is the vector of outcomes ln(krel) and X is the matrix of explanatory variables
(A,C,G). XT is X transposed, and X21 is the inverse of X.

To compare predicted and measured ln(krel) values for all sequence variants
(Fig. 3a), we calculated predicted values using equation (15), plotted these versus
the corresponding measured value, and determined the correlation between mea-
sured and calculated data set. The coefficient of correlation (R2) was computed
according to37:

R2~1{
S2

error

S2
total

ð17Þ

S2
error is the sum of squared errors and measures the error, or unexplained variance,

in the regression. The error is the distance from each point to the regression line,
and is calculated for each data point, squared, and summed, according to:

S2
error~

P
i yi{fið Þ2 ð18Þ

S2
total is the sample variance, which is calculated according to:

S2
total~

X
i
(y{y)2 ð19Þ

Position weight matrix. To examine how the position of different nucleobases in
the binding site affects the reaction rate, we included the position of each base in
the regression model. This model has 18 explanatory variables, three for each of
the six positions, as explained above. Each variable is 1 if the respective base is at a
given position, and 0 otherwise. For example, G4 will be 1 if the fourth base is a G,
and 0 otherwise. We used the reference sequence as baseline, and did therefore not
include these variables in the regression. Calculations of linear coefficients
(Extended Data Fig. 7b), and the comparison between predicted and measured
values for individual ln(krel) values (Fig. 3a) were performed as described above.
Functional couplings between bases. We created interaction variables of the
same form as in the two-dimensional model 2, but these interaction terms were
composed of two bases. For example, A1G4 is 1 if the first base is A and the fourth
base is G, and will be 0 otherwise. We then performed calculations with the two-
dimensional model 240 times, each time adding a separate interaction term. Inter-
actions whose effect was statistically significant (P , 1025) were retained, other
interactions were not considered further. Next, we included all statistically signifi-
cant interactions in one model, which was further pared using stepwise regression38.
This approach yielded a model similar to the position weight matrix augmented
with the 44 most significant interaction terms. Calculations of linear coefficients
(Fig. 3b), and the comparison between predicted and measured values for indi-
vidual ln(krel) values (Fig. 3a) were performed as described above.
Neural network analysis. Analysis was performed with the MATLAB Neural
Networks Toolbox (v. 3.0). Data input was identical to the two-dimensional model
above. Data were fit to a three-layer feed-forward network with 13 hidden nodes.
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Interaction terms are not necessary in this model, because the neural network
learns the interaction patterns from the raw sequence data. The resulting network
was used to generate estimates for the reaction rate for each base sequence. Neural
nets were trained on 60% of the data, validated on 20% of the data and tested on the
remaining 20%. Almost identical R2 values were obtained for both the 20% hold-
out sample, and the entire data set.

31. Guo, X. et al. RNA-dependent folding and stabilization of C5 protein
during assembly of the E. coli RNase P holoenzyme. J. Mol. Biol. 360, 190–203
(2006).

32. Christian, E. L., McPheeters, D. S. & Harris, M. E. Identification of individual
nucleotides in the bacterial ribonuclease P ribozyme adjacent to the pre-tRNA

cleavage site by short-range photo-cross-linking. Biochemistry 37,
17618–17628 (1998).

33. Cha, S. Kinetics of enzyme reactions with competing alternative substrates. Mol.
Pharmacol. 4, 621–629 (1968).

34. Chan, P. P. & Lowe, T. M. GtRNAdb: a database of transfer RNA
genes detected in genomic sequence. Nucleic Acids Res. 37, D93–D97 (2009).

35. Northrop, D. B. Fitting enzyme-kinetic data to V/K. Anal. Biochem. 132, 457–461
(1983).

36. Northrop, D. B. Rethinking fundamentals of enzyme action. Adv. Enzymol. 73,
25–55 (1999).

37. Theil, H. Economic Forecasts and Policy (North Holland Publishing, 1961).
38. Bendel, R. B. & Afifi, A. A. Comparison of stopping rules in forward ‘‘stepwise’’

regression. J. Am. Stat. Assoc. 72, 46–53 (1977).

LETTER RESEARCH

Macmillan Publishers Limited. All rights reserved©2013



Extended Data Figure 1 | C5 binding site in the 87 ptRNA leaders in E. coli.
a–c, Alignment and sequence logos for the C5 binding site in all 87 ptRNA
leaders encoded by E. coli. Binding of C5 to the consecutive ptRNA positions
23 to 28 is well established, based on a crystal structure9 and biochemical
evidence10; that is, looping of bases seen for certain RNA- and DNA-binding
proteins, does not occur with C5. Consistent with this idea, we did not detect
any sequence motif with the MEME software, when including positions 21 to

210. a, Sequence alignment. Sequences were aligned with CLUSTAL. Coloured
squares indicate the bases (C, blue; A, green; U, red; G, black). Anticodon, the
anticodon recognized by the tRNA; tRNA#, the tRNA identification number;
tRNA type, the amino acid. b, Sequence logo depicting the probability of
any base at a given position, based on the alignment in a. The logo was
generated with Weblogo. c, Sequence logo for the information content of the
alignment in a. The logo was generated with Weblogo.
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Extended Data Figure 2 | Preparation of DNA libraries for Illumina
sequencing. a, BAR, the indexing barcode; NN, the degenerated barcode. For
primer sequences see Methods. RT, reverse transcription. b, DNA libraries
(PCR products, a) for samples at the time points indicated. Controls: lane 5, no

RNA; lane 6, no reverse transcriptase. c, Read structure. Nucleotides 1 and 2 are
degenerated barcode; nucleotides 3-5 are sample barcode (index tag);
nucleotides 6–29 are additional leader sequence, nucleotides 30–35 are
randomized leader sequence; nucleotides 38 onwards are tRNA.
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Extended Data Figure 3 | Multiple turnover reaction scheme. E, enzyme;
ES1...i, individual enzyme substrate complexes; K1...i, individual functional
binding constants; S1....i, individual substrate variants; V1...i, individual reaction
rate constants.
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Extended Data Figure 4 | Effect of the 21 nucleotide extension on ptRNA
processing by RNase P. a, Relative processing rate constants were measured
for three sequence variants from different parts of the affinity distribution by
PAGE. Reactions for each sequence variant were conducted in the presence of
the randomized population (unlabelled) with equal amounts of substrate with
(S/21) and without the 21-nucleotide extension (S/nL). The asterisk marks the
position of the radiolabel at the 59 end of the substrate. Reactions were
conducted under the conditions described in the Methods. b, PAGE for the
reaction of the reference sequence variant. The time point at 5 min is marked
for reference. c, The effects of the 21-nucleotide extension on relative
processing rate constants of the three indicated sequence variants. The position
of each sequence variant in the affinity distribution of all sequence variants
(Fig. 2d) is given for reference by the vertical line above the plot. The number
indicates the factor (S/nL)/(S/21) by which the 21-nucleotide extension
decreases the relative rate constant of the given sequence variant, given as
average from three independent experiments. The horizontal line
approximates the degree of the relative change. The 21-nucleotide extension
decreases the observed for sequence variant (CTCCTG) by a factor of 2.3. For
the genomically encoded leader sequence AAAAAG, the 21-nucleotide
extension decreases krel for by a factor of 0.95; that is, the substrate with the
extension reacts slightly faster than the substrate without extension. The fast
reacting substrate (TTATAT) is also only minimally affected by the extension
(0.92). Together, the data show only minor effects of the 21-nucleotide
extension on the position of a given sequence variant in the affinity distribution.
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Extended Data Figure 5 | Processing of ptRNAMet(-3-8) by RNase P without
C5. Distribution of krel values for processing of ptRNAMet(-3-8) by RNase P

without C5 (black line). Data were obtained analogously to those with C5. For
comparison, the distribution of krel values with C5 is shown (red line).
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Extended Data Figure 6 | Sequence logos are only associated with the
high-affinity tail of the distribution. a, Plot of sequence variants ranked from
weakest to tightest binder to the specific transcription factor Arid3a (Fig. 2d),
based on data published previously18. To facilitate direct comparison to the
six-nucleotide binding site of C5, only approximately half of all sequences are
shown in the plot, and only six positions (positions two to seven, as indicated)
of the eight-nucleotide binding site are shown. The position in the binding site
is marked on the right. The brackets mark 0.1% of sequence variants
(33 sequences) that bind tightest, fall into the medium, and bind weakest.
Sequence logos show the information content in these sequences. The logos
were generated with Weblogo. Sequence signatures of the tightest binding

variants are highly enriched in physiological substrates of Arid3a18. b, Plot of
sequence variants ranked from weakest to tightest binder to another specific
transcription factor, Hnf4a, based on data published previously18.
Approximately half of all sequences are shown in the plot, and six positions
(positions two to seven, as indicated) of the eight-nucleotide binding site.
Sequence signatures of the tightest binding variants are highly enriched in
physiological substrates of Hnf4A18. c, Plot of sequence variants ranked from
slowest to fastest reacting for C5 (Fig. 2e). The brackets mark 1% of sequence
variants that react fastest, fall into the medium and react slowest. Sequence
logos were generated as in a.
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Extended Data Figure 7 | Sequence determinants for substrate recognition
by C5. a, Model considering identity, but not position of a given base in the
C5 binding site. Ranking of the four bases according to their potential to
promote (positive linear coefficient) or decrease (negative linear coefficient)
functional C5 binding. For calculation of linear coefficients, see the Methods.
b, Position weight matrix (PWM) model considering both base identity and

position in the binding site, but assuming independent contributions of each
position. The plot shows the ranking of the bases according to their potential to
promote (positive linear coefficient) or decrease (negative linear coefficient)
functional C5 binding, relative to the reference sequence (AAAAAG, Fig. 1c).
Bases are coloured as in a. For the calculation of linear coefficients, see
the Methods.
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Extended Data Figure 8 | Neural network analysis. Correlation between
observed krel and values calculated with the best model obtained by neural
network analysis (Methods).

RESEARCH LETTER

Macmillan Publishers Limited. All rights reserved©2013



Extended Data Table 1 | Sequencing data.

The overall numberof reads obtained for the respective time points in the independent replicate experiments1 and 2, and the numberof reads that passed the quality control. *The fraction of processed ptRNA was
determined from PAGE data (Fig. 1e and Methods). {Read numbers after filtering for potential PCR artefacts for each sequence variant (Methods).
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