
RNA–protein interactions are critical for the regulation 
of gene expression1. Research over recent decades has 
shown that RNA is invariably bound and often altered 
by proteins in cells, and that in biological environments 
RNAs generally function together with proteins as 
RNA–protein complexes known as ribonucleoproteins 
(RNPs)2,3. It has also become clear that cellular RNA–
protein interactions form a highly complex network 
involving numerous RNAs and proteins4. In addition, a 
multitude of diseases have been linked to misregulation 
or malfunction of proteins that interact with RNA5–7.
Thus, deciphering RNA–protein interactions on both 
molecular and cellular scales is central to understanding 
human physiology and disease.

Typical eukaryotic cells contain thousands of differ-
ent RNAs8. For every protein that interacts with RNA, 
it is critical to understand the molecular characteristics 
that define whether and how the protein discriminates 
between different potential binding sites in these RNAs. 
For this purpose, proteins that interact with RNA are 
traditionally classified as either ‘specific’ or ‘nonspecific’. 
Specific proteins associate preferentially with defined 
RNA sequence or structure motifs, or a combination 
thereof. Nonspecific proteins associate with RNA sites 
that seem to be devoid of sequence or structure motifs. 
Roughly half of all proteins that interact with RNA fall 
into the nonspecific category. Examples include trans-
lation elongation and initiation factors, and proteins 
involved in RNA degradation9,10. Binding to diverse RNA 
sites is critical for the biological function of nonspecific 
proteins.

Although the terms specific and nonspecific 
are widely used, numerous studies that mapped 

RNA–protein interactions in cells or measured RNA–
protein associations for large numbers of sequences 
in vitro indicated that specificity, or the lack thereof, is 
considerably more nuanced than suggested by the binary 
specific versus nonspecific classification. As descriptions 
of cellular RNA–protein interaction networks move 
towards systems-level quantitative models4,11,12, and as 
other lines of research attempt to engineer novel RNA-
binding proteins (RBPs)13–16, a comprehensive, quantita-
tive view on specificity and nonspecificity is required. In 
this Review, we discuss emerging approaches aimed at 
this goal. We start with a brief overview of the tremen-
dous complexity of RNA–protein interactions in vivo 
(in the cell). We then discuss new methods that enable 
quantitative measurement of protein binding to large 
numbers of RNA variants, as well as description of the 
resulting binding distributions: [Au: colon OK here?] 
binding models and free energy landscapes. Finally, we 
review the insights and potential provided by these new 
methods and associated concepts that contribute towards 
devising a nuanced, inclusive description of specific and 
non-specific RNA–protein interactions. [Au: ok?]

RNA–protein interaction complexity
In mammalian cells, more than 1,000 diverse proteins 
interact with RNA1,17–19. For the purpose of this Review, 
we refer to these proteins as RBPs, although only a sub-
set of these proteins function solely to bind RNA. In 
humans, a certain set of RBPs is expressed in all tissues 
investigated thus far1. For other RBPs, expression can 
vary considerably, and some are expressed exclusively in 
certain tissues1,5,20,21. Many RBPs have a modular struc-
ture, often containing multiple and different [Au: ok? 

Specificity and nonspecificity in  
RNA–protein interactions
Eckhard Jankowsky1–3 and Michael E. Harris2

Abstract | To fully understand the regulation of gene expression, it is critical to quantitatively 
define whether and how RNA‑binding proteins (RBPs) discriminate between alternative 
binding sites in RNAs. Here, we describe new methods that measure protein binding to large 
numbers of RNA variants and that reveal [Au: ok? ‘measure.. binding patterns’ did not 
seem correct] the binding patterns they produce, including affinity distributions and free 
energy landscapes. We discuss how the new methodologies and the associated concepts 
enable the development of inclusive, quantitative models for RNA–protein interactions that 
transcend the traditional binary classification of RBPs as either specific or nonspecific.

1Center for RNA Molecular 
Biology, Case Western 
Reserve University.
2Department of Biochemistry, 
Case Western Reserve 
University.
3Department of Physics 
School of Medicine, Case 
Western Reserve University, 
10900 Euclid Avenue, 
Cleveland, Ohio 44106, USA.
e‑mails: exj13@case.edu; 
meh2@case.edu
doi:10.1038/nrm4032
Published online  
XXXX 2015

R E V I E W S

NATURE REVIEWS | MOLECULAR CELL BIOLOGY	  VOLUME 16 | SEPTEMBER 2015 | 1



Nucleotidyltransferases
Enzymes that catalyse the 
transfer of a phosphorylated 
nucleoside from one 
compound to another.

or ‘many different’?] RNA‑interacting domains1,22,23. 
RNA‑interacting domains are traditionally called RNA-
binding domains (RBDs), but these domains often also 
harbour functions other than RNA binding (TABLE 1). For 
the purpose of this Review, we keep the RBD designa-
tion. The main RBD classes include enzymatic domains 
that chemically alter RNA (such as nucleotidyltransferases, 
ribonucleases and RNA‑modifying enzymes) and those 
that couple nucleotide binding or hydrolysis to RNA 

binding or structural remodelling (such as GTPases and 
helicases) (TABLE 1). [Au: If the examples in brackets are 
the only examples of these types of domains then please 
stet the ‘such as’] In addition, there are numerous RBDs 
that only bind RNA. Some RBDs are found in large num-
bers of proteins1,5,17. The most frequently occurring is the 
RNA‑recognition motif (RRM), an RNA-binding mod-
ule present in several hundred mammalian proteins24. 
The most common enzymatic domain is the helicase 

Table 1 | Classification of common protein domains that interact with RNA*

Domain class Subclass (superfamily): Family

Nucleotidyltransferases PAPs: Canonical PAPs and non-canonical PAPs

Terminal uridylate transferases

CCA-adding enzyme

Guanylyltransferases

RNA ligases

2ʹ–5ʹ PAPs

RNA-dependent RNA polymerases

Ribonucleases α/β‡ [Au: does the / mean ‘and’, ‘or’ or ‘and/or’? Please avoid the solidus]: RNase A, 
RNase H, 3'→5' exo, [Au: addition of prime symbols ok?] [Au: can ‘exonuclease’ be 
written out or defined below?] RNase II, RNase R [Au:OK?], RNase E, RNase PH and 
metallolactamase

α and β: RNase T2 and XRN1

α‡: RNase III

Decapping enzyme

RNA-modifying enzymes tRNA synthetases: class I and class II

Deaminases: ADAR, APOBEC, TadA and CDA

Pseudouridine synthases

Methyltransferases: RMT, SPOUT, Radical SAM-dependent methyltransferase and 
FAD/NAD(p) [Au: what does the / mean here? Please spell out. And why is there a 
p in brackets? Does it mean NAD and/or NADP (best spelled out)?]

Helicases Superfamily 1: Upf1‑like

Superfamily 2: Ski2‑like, RIG‑I‑like, DEAD-box, DEAH, RHA [Au: OK?], Viral 
superfamily 2 and Cas3

Superfamily 3

Superfamily 4

Superfamily 5

GTPase EF‑Tu, EF‑G [Au: OK?], BMS1, SNU114[Au: OK?]

RNA-binding domains RRM, KH, S1, OB‑fold, PUF, sRBD, zinc‑fingers, PAZ, PIWI, LSM, KOW, MIF4G, NTF2, 
GAR, HEAT repeat, homeodomain and CSD

[Au: we usually use all upper case for genes and proteins from no particular organism (when talking in general). Should we 
use upper case throughout for the proteins here? Or are certain proteins above and below only found in particular 
organisms (e.g. yeast or fly) or are the papers they are from on different organisms?] ADAR, adenosine deaminase that acts 
on RNA; APOBEC, apolipoprotein B mRNA‑editing enzyme catalytic polypeptide-like; BMS1, BMh‑sensitive 1; Cas3, 
CRISPR‑associated protein 3; CDA, cytidine deaminase; CSD, cold shock domain; dsRBD, double‑stranded RNA‑binding domain; 
EF‑G, elongation factor G; EF‑Tu, elongation factor thermo unstable; FAD/NAD(p), flavin adenine dinucleotide/nicotinamide 
adenine dinucleotide phosphate [Au: please define the solidus (/) here. Please clarify why the p is in brackets]; GAR, glycine 
arginine rich; HEAT, Huntington, elongation factor 3, protein phosphatase 2A and TOR1; KH, K homology; KOW, Kyprides–
Onzonis–Woese; LSM, like Sm; MIF4G, MA‑3 and eIF4G; NTF2, nuclear transport factor 2; OB‑fold, oligonucleotide/oligosaccha‑
ride-binding fold; PAPs, poly(A) polymerases; PAZ, PIWI, Argonaute and Zwille; PIWI, P‑element induced wimpy testis; PUF, Pumilio 
and FBF; RHA, RNA helicase A; RIG‑I, retinoic acid-inducible gene I; RMT, ribomethyltransferase; RRM, RNA‑recognition motif; S1, 
similarity to ribosomal protein 1; Ski2, superkiller 2; SNU114, small nuclear ribonucleoprotein‑associated 114; SPOUT, spoU and 
trmD RNA methylase; TadA, tight adherence protein A; Upf1, up‑frameshift suppressor 1; XRN1, 5ʹ–3ʹ exoribonuclease 1. *The 
classification of ribonuclease domains is based on data from REF. 17, of helicase domains on data from REF. 25 and of 
methyltransferase domains on data from REF. 134. The compilation of RBDs is based on data from REF. 1. ‡The classification of 
nucleases is based on protein folds: α, α‑helices; β, β‑sheets.
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RNA class Length (nt) Number of species Abundance (% RNA mass)

rRNA 160–5,025 6 80–85

tRNA 70–90 ~120 10–13

mRNA 2,000–10,000 >20,000 3–5

snoRNA ~90 ~200

<2

snRNA 100–300 10

miRNA ~22 ~1,000

IncRNA 200–17,000 >1,000

Y RNA 80–110 2

7SLRNA ~300 1

telRNA 450 1

vtRNA ~80–120 5

scaRNA ~200–300 ~20

piRNA 27 >1,000,000

Charged tRNAs
tRNA molecules that are 
chemically bonded by a 2ʹ or 
3ʹ aminoacyl linkage to its 
cognate amino acid.

Competing endogenous 
RNAs
(ceRNAs). RNAs that regulate 
other RNA transcripts by 
competing for shared micro 
RNAs.

domain, which is found in roughly 70 human proteins 
that interact with RNA17,25. By contrast, other domains — 
for example RNA guanyltransferase — [Au: not guanylyl-
transferases, to match table?] are found in only a single 
protein per organism26. Finally, proteins that interact with 
RNA vary widely in their abundance, ranging from few to 
100,000 molecules per cell27.

RNA binding is not restricted to proteins with 
domains that are traditionally viewed as RBDs. Recent 
work has revealed extensive RNA association of consid-
erable numbers of metabolic enzymes lacking previously 
identified RBDs18,19,28,29. Other studies show association 
of (mostly long non-coding) RNAs with transcription 
factors30–32. The number of proteins that demonstrably 
interact with RNA is thus likely to grow in the future.

The number of RNA species far exceeds the number 
of RBPs in typical eukaryotic cells. Human cells encode 
more than 20,000 different mRNAs (FIG. 1); most cell 
types express between 11,000 and 15,000 at any time33. 
The diversity of mRNAs is further increased by alter-
native splicing34 and by chemical modifications35–38. In 
addition to mRNAs, metazoan cells can express thou-
sands of species of long non-coding RNAs and hundreds 
of microRNAs (miRNAs), tRNAs and small nucleolar 
RNAs (snoRNAs). At certain stages of germ cell devel-
opment, large numbers of PIWI-interacting RNAs 
(piRNAs) are expressed39. Conversely, there are only a 
few ribosomal RNA (rRNA) and small nuclear RNA 
(snRNA) species. In addition, cleaved RNA fragments 
are emerging as potential regulatory molecules40–42. The 

various RNA types differ dramatically in their abun-
dance. In most eukaryotic cells, rRNAs account for 
roughly 80–85% of the cellular RNA mass, followed by 
tRNAs, mRNAs and snoRNAs; all other RNAs together 
account for less than 2% of the mass (FIG. 1). At certain 
stages of germ cell development, these RNA mass ratios 
might change owing to the expression of piRNAs39. Even 
within each RNA class, abundance varies widely. The 
expression levels for mRNAs range over four orders of 
magnitude33. A small number of mRNA species often 
accounts for 50% of the cellular mRNA mass. For exam-
ple, 50% of the mRNA mass is contributed by only 250 
mRNA species (~4%) in yeast, by 900 mRNA species 
(~7%) in the human cerebellum and by fewer than 10 
mRNA species (~0.01%) in [Au: human?] liver tissue33. 
Another factor contributing to the disparity in cellular 
RNA mass is that RNAs vary greatly in their length, 
ranging from more than 10,000 nucleotides (mRNAs 
and long non‑coding RNAs) to only 22 nucleotides 
(miRNAs) (FIG. 1).

Any individual RNA is usually bound by multiple 
proteins3,4. Different proteins can bind simultaneously, 
subsequently [Au: does this mean in succession? If not, 
please clarify what it is subsequent to] or in a mutu-
ally exclusive manner3,4. Conversely, most proteins 
can bind multiple RNAs43. Some proteins, such as the 
mRNA‑export factors, need to contact many diverse 
mRNAs44, and the translation elongation factor thermo 
unstable (EF‑Tu) binds all charged tRNAs45. Given the 
number of RNAs and RBPs, the number of possible 
RNA–protein interactions is extremely large. Further 
variation is added by proteins that do not directly con-
tact the RNA but modulate the binding of RNA by RBPs; 
for example, through post-translational modifications 
or through interactions with RBPs46,47. RNAs can also 
interact with one another, as illustrated most promi-
nently by the interactions between mRNAs, miRNA 
and competing endogenous RNAs (ceRNAs)48,49. Given the 
simultaneous presence of large numbers of RNAs and 
RBPs and the layers of modulation of their interactions 
by other proteins, cellular RNA–protein interactions rep-
resent a massive set of interdependent interactions. Most 
RBDs recognize sites made of only 3 to 8 nucleotides 
and often tolerate a high degree of sequence variation 
in these binding sites3. Thus, the number of potential 
interactions of even highly selective proteins in organ-
isms with small transcriptomes, such as yeast, can be 
extraordinarily large.

Every interaction between an individual protein and 
a specific RNA site is dictated by the inherent affinity of 
the protein for the RNA site, the concentration of the 
protein, the concentration of the RNA, the competition 
from other RNAs for association with the protein, and 
the competition among [Au: ‘among’ ok?] other pro-
teins for the RNA’s binding site. In addition, proteins 
that interact with or modify RBPs can profoundly affect 
RNA-binding patterns. Therefore, it is not surprising 
that substrate selection by a given protein rarely con-
forms to a binary specific versus nonspecific binding 
model. Yet, the challenge remains to devise models 
that describe RNA–protein interactions in sufficient 

Figure 1 | The major classes of eukaryotic RNAs.  For each class of RNA, approximate 
length, number of different species and abundance are indicated. For more detailed 
information, see REF. 133. The length of mRNAs is given for mature, processed species; 
the number of species refers to putative mRNA‑coding genes. Long non‑coding RNAs 
(lncRNAs) include all RNAs that do not explicitly belong to another RNA class and that 
exceed 200 nucleotides (nt) in length. 7SLRNA refers to the RNA component of the 
signal‑recognition particle (SRP). PIWI-interacting RNAs (piRNAs) are expressed only at 
specific stages of germ cell development and are not included in calculations of cellular 
RNA abundances. miRNA, microRNA; rRNA, ribosomal RNA; scaRNA, small Cajal 
body‑specific RNA; snRNA, small nuclear RNA; snoRNA, small nucleolar RNAs; 
telRNA, telomeric RNA; vtRNA, vault RNA [Au: Does ‘vtRNA’ refer to ‘vault RNA’ or to 
‘viral tRNA’>].
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Equilibrium binding free 
energy
The Gibbs free energy (ΔG), 
typically measured in units of 
kcal per mol, [Au: ‘per’ ok?] 
for an equilibrium binding 
reaction that is related to the 
equilibrium dissociation 
constant, Kd.

quantitative detail to allow predictions of the RNA-
binding pattern of individual proteins under a defined 
set of parameters. A critical first step towards this goal 
is addressed by approaches that quantitatively assess the 
binding of proteins to many different RNA sites.

Measuring protein binding to many RNAs
Several methods have been developed to determine 
protein‑binding sites on RNAs on a transcriptome-wide 
scale50,51. The techniques rely either on the covalent 
crosslinking of proteins to RNA by ultraviolet irradia-
tion followed by immunoprecipitation (crosslinking and 
immunoprecipitation (CLIP) and its derivatives)52–55 or 
on immunoprecipitation of RNA-bound proteins with a 
chemical crosslinker (RNA–protein immunoprecipitation 
in tandem (RIPiT)56) or without57. The crosslinked RNA 
fragments are identified by next-generation sequencing or 
microarray analysis. These methods represent a quantum 
leap forward with respect to visualizing protein-binding 
patterns on RNAs, often revealing binding to numerous 
different sites on large numbers of RNAs. The binding 
sites often allow the definition of consensus motifs for 
protein binding43. Although powerful and highly instruc-
tive, these techniques do not currently provide the quan-
titative data necessary to assess affinity or binding and 
dissociation kinetics of RNA–protein interactions.

Other, novel approaches aim to quantitatively meas-
ure protein binding to large numbers of RNA variants 
in vitro. Recently, in vitro selection by systematic evolu-
tion of ligands by exponential enrichment (SELEX) was 
combined with high-throughput sequencing13,58,59. SELEX 
has traditionally been used to identify the few RNA spe-
cies most preferentially bound by RBPs59. The combina-
tion with next-generation sequencing allows the analysis 
of much larger numbers of sequences and thus provides 
insight into the RNA‑binding preferences of RBPs beyond 
the tightest-bound species13,58,59. SELEX has also been used 
to determine the binding affinities [Au:OK?] of RBPs in 
the cell60. However, even when combined with next-gen-
eration sequencing, SELEX approaches produce a bias in 
the RNA-binding analysis towards the highest-affinity 
targets.

To avoid this bias, other techniques have been devel-
oped that directly analyse interactions of proteins with 
large populations of diverse RNAs (BOX 1). These methods 
bypass the selection and amplification cycles of the SELEX 
procedure and allow measurements of both weakly and 
tightly bound RNA species. Some of these techniques are 
analogous to high-throughput methods for investigating 
the binding of transcription factors to large numbers of 
DNA sequences61. All of these approaches measure dif-
ferences in protein binding to a pool of diverse RNA sub-
strates (BOX 1).

RNA–protein affinity distributions
Many studies that map RNA–protein interactions on a 
transcriptome-wide scale show that RBPs often bind to 
RNA sites that vary considerably in sequence or struc-
ture43,62. This is expected for proteins considered to be 
nonspecific binders but seems to contradict the notion of 
sequence‑specific binding proteins. Similar observations 

have been made for DNA binding by sequence‑specific 
transcription factors63: in vitro measurements of intrinsic 
affinities of transcription factors for all possible sequence 
variants of DNA oligomers showed that each protein had 
a wide range of binding affinities to different sequence 
variants64–66. Differences between equilibrium dissociation 
constants for low‑ and high‑affinity sites are often consid-
erable, and they can span several orders of magnitude63–66.

To describe the entire range of affinities seen for a given 
DNA‑binding protein or RBP towards all possible DNA 
or RNA species, it is useful to use affinity distributions67, 
which are histogram plots of substrate variants with simi-
lar affinities (FIG. 2). Affinity distributions have revealed 
incremental contributions [Au: is it possible to clarify 
‘incremental’ here?] of the nucleotides in the binding site 
to the equilibrium binding free energy, rather than a drastic 
difference between nucleotide composition in preferred 
and non-preferred sites (FIG. 2). For sequence‑specific tran-
scription factors, physiologically preferred binding sites 
cluster at the high-affinity region of the distribution61,67,68.

A complete, quantitative RNA‑affinity distribution 
has so far been reported only for C5, the protein subunit 
of RNase P from Escherichia coli67 (FIG. 2). Distributions 
of ranked binding preferences, which are related but not 
identical to an affinity distribution, have been measured 
by the RNAcompete method for a larger number of 
RBPs69. The shape of the observed affinity distributions is 
similar to those seen for transcription factors67, also sug-
gesting incremental contributions of the nucleotides in the 
binding site to the binding free energy.

Incremental differences between sequence variants 
explain why proteins can bind with similar affinity to a 
range of seemingly divergent sequences (FIG. 2a), which is 
particularly significant for RBPs because cognate sites for 
most RBDs encompass only 3–8 nucleotides3. Potential 
binding sites of this size occur (with a few substitutions) 
at very high frequency even in small genomes. Inconstant 
protein‑binding preferences may be attributable to the 
varying expression levels of the RNAs33. [Au: we were 
not 100% clear on your intended meaning. Please check 
edits and clarify if the above is not correct. In what way 
is ‘ambivalence’ amplified?] At limiting concentrations 
of protein, low‑affinity, non-consensus sites in highly 
expressed RNAs can compete efficiently for protein bind-
ing with high‑affinity consensus sites in RNAs expressed 
at a lower level. This might be one of the reasons that, 
in cells, proteins that are considered specific often bind 
to sites with relatively poor matches to their consensus 
motifs62. Whether binding to such degenerate sites has 
biological consequences other than protein sequestration 
is an open question.

Affinity distributions also provide the means to com-
prehensively quantify the specificity of a given RBP or 
RBD, although to our knowledge this type of quantifica-
tion has not yet been reported. The width of the distribu-
tion provides an objective measure for the capacity of an 
RBP or RBD to globally discriminate between RNA sub-
strate variants. Multimodal distributions are also conceiv-
able and would describe different binding modes, which 
could arise, for example, through the formation of stable 
RNA structures by a subset of substrates.
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How affinity distributions are related to RNP struc-
tures is currently not understood. A recent pioneering 
study investigated the structural basis for a range of affini-
ties that the bacterial RBP ribosomal RNA small subunit 
methyltransferase E (RsmE) shows towards different sub-
strate variants70, although no complete affinity distribu-
tion was measured. For RsmE, conformational adaptation 
of protein side chains and of RNAs is responsible for the 
range of affinities70.

Binding models
As noted, affinity distributions are useful because they 
represent a non-biased description of protein binding to 
unstructured RNA, to a defined RNA structure, or to a 

combination of both. For proteins that bind to unstruc-
tured RNA, sequence variants in the high-affinity region 
of the distribution share a consensus sequence motif 67 
that can be expressed as a sequence probability logo61; 
other regions of the distribution do not share a sequence 
consensus (FIG. 2b). Consensus sequences describe the 
probability by which a given nucleotide is present at 
a given position in the binding site for a subset of all 
sequence variants61,68. The larger the number of sequence 
variants in a given subset of the distribution, the weaker 
the consensus (FIG. 2b). There are several approaches 
to delineate consensus motifs from binding-site data 
obtained either in vitro or in vivo71–78. A consensus motif 
can guide a qualitative prediction of whether or not a 

Box 1 | Techniques for measuring protein binding to many RNA sequences in vitro

In RNAcompete and RNA Bind‑n‑Seq, a pool of RNA species, each 
containing a region of randomized sequence, is incubated in vitro with a 
specific RNA‑binding protein (RBP). The RBP is pulled down, bound RNAs 
are recovered and their sequences are determined by microarrays 
(RNAcompete)130 or next-generation sequencing (Bind‑n‑Seq; see the 
figure, part a)104. These methods have been used to determine sequence 
motifs for RNAs that bind tightest to a given protein69,130. The number of 
sequences that can be measured simultaneously is currently limited to 
between approximately 2.5 × 108 and 5 × 108 RNAs, corresponding to 9–10 
randomized nucleotides.

High-throughput sequencing kinetics (HiTS-Kin; see the figure, part b) 
follows the enzymatic processing of RNA in a reaction that depends on an 
RBP, thus measuring functional RBP binding to RNA67. Processed and 
non-processed RNA species are separated (for example, using gel 
electrophoresis). The ratios of processed versus non-processed RNAs over 
time are analysed by next‑generation sequencing, providing kinetic 
information67. HiTS-Kin can be adapted to different experimental systems 
and to reactions in vivo, provided that reactive and unreactive RNA 
species can be separated.

RNA array and high-throughput sequencing–RNA-affinity profiling 
(HiTS-RAP; see the figure, part c) directly visualize the RNA–protein 
interactions in the Illumina next‑generation sequencer91,131. A pool of diverse 
DNA sequences is immobilized in the sequencer flowcell. Each respective 
sequence is identified by a round of sequencing. Subsequently, each DNA 
serves as template for RNA polymerase to transcribe RNA. Following 
transcription, the polymerase is stalled (squares mark the block, which in 
RNA array is biotin-streptavidin at the terminus of the DNA and in HiTS-RAP 
is the binding of the protein terminus utilization substance to a terminator 
site in the DNA). [Au:OK? Tus and Ter removed as they are not in the 
figure] Transcribed RNA remains bound to the stalled polymerase, thus 
allowing identification of each RNA species. A fluorescently labelled RBP is 
added and its interaction with the RNA is directly monitored by measuring 
fluorescence changes at the positions that correspond to the different RNAs. 
Proteins can be flowed in and out the flowcell multiple times and at different 
concentrations, providing readouts of binding and dissociation kinetics in 
real time91. RNA array and HiTS-RAP are conceptually similar to techniques 
for measuring the kinetics of protein–RNA interactions by single‑molecule 
fluorescence via total internal reflection132.
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protein binds well to a certain motif. However, in most 
cases, consensus motifs do not allow affinity calcula-
tions for different sequence variants, and they only rarely 
provide information on the characteristics of the entire 
affinity distribution61,68.

The simplest model to describe the binding of a pro-
tein to all RNA sequence variants is the position weight 
matrix (PWM)61,68. A PWM is a score calculated for each 
nucleotide at each position in the binding site (FIG. 3a). 
The sum of the individual nucleotide scores for a given 
sequence provides a score for this sequence variant61. The 
PWM can also be visualized as a logo68, but it is impor-
tant to note that a PWM logo differs from the probabil-
ity logo discussed above. If affinities are expressed as 
binding free energies, a PWM becomes an energy score, 
describing the energetic contribution of each nucleotide 
at each position to the binding free energy61,68. A PWM 
assumes [Au: OK?] that the nucleotides at each position 
contribute independently of each other to the binding of 
the protein61,68,79. PWMs often explain only a subset of 

the observed experimental variance in affinities61,66,68,80, 
and they frequently fail to accurately explain the high-
est and lowest observed affinities67. To more accurately 
describe observed affinities of DNA-binding proteins, 
[Au: should a link be given in next sentence suggesting 
similar >1 PWM use for RBPs?] it has been suggested 
to use more than one PWM for a single protein63. This 
would imply multiple binding modes of an RBP.

A significant improvement in the description of the 
experimental variance is often obtained by considering 
coupled contributions from multiple positions in the 
binding site67,81,82 (FIG. 3b). Couplings are incorporated by 
assigning a score for each combination of nucleotides 
and then summing the score for the combinations pre-
sent in a given sequence67. The incorporation of even 
a modest number of pairwise couplings (called either 
a pairwise interaction matrix (PIM) or a dinucleotide 
weight matrix (DWM)) often improves the binding 
model67,81,82. However, it is critical to carefully evaluate 
that an improved fit does not result simply from the 
incorporation of more variables in the model. Of note, 
only roughly 20–30% of the entire sequence space is 
needed to produce an unambiguous binding model, 
provided that the sequences cover the entire range of the 
affinity distribution67. Interdependencies between neigh-
bouring nucleotides in binding sites of DNA-interacting 
proteins have also been described by hidden Markov mod-
els83,84, and these models are applicable to RBPs as well.

Although accounting for interdependencies between 
two nucleotides often improves the binding model, fur-
ther improvements can be accomplished by considering 
higher-order couplings between more than two nucleo-
tides79. Various approaches to accomplish this goal have 
been developed for DNA-binding proteins, including 
higher-order hidden Markov models85, neural network 
analyses86, decision tree-guided approaches87, higher-order 
Bayesian networks88 and approaches that incorporate pro-
tein structural information89. Neural network analysis 
has been applied to RNA–protein interactions measured 
in vitro with the high-throughput sequencing kinetics 
(HiTS-Kin) approach67. In this case, neural network 
analysis did not markedly improve the fit of the model 
to the data for the C5 protein, suggesting that pairwise 
couplings between mostly adjacent nucleotides are the 
major contributor to protein binding in the tested case67. 
Hidden Markov models were also used to improve rules 
predicting RNA‑binding patterns for the splicing fac-
tor polypyrimidine tract‑binding protein 1 (PTBP1) 
in vivo90.

Free energy landscapes
Substrate affinities for proteins that interact with RNA 
usually refer to equilibrium binding constants, which 
express the energetic difference between ground state 
(protein and RNA are unbound) and product state (pro-
tein and RNA are bound) in a one-step binding reaction 
(FIG. 4a). However, differences in equilibrium binding affin-
ity between substrate variants can arise from alterations 
in ground, transition or product state energies, or from 
combinations thereof (FIG. 4a). These alterations can be 
assessed only through measurements of association rate 

Figure 2 | RBP affinity distributions.  a | Ranked affinities for an RNA‑binding protein 
(RBP) with a binding site of six nucleotides (C5 from Escherichia coli) to all possible RNA 
variants67. The numbers on the left indicate the nucleotide position in the binding site. 
b | Histogram of relative affinities (on a logarithmic scale) for the sequence variants 
shown in part a. Relative affinities are calculated in relation to a standard variant, which 
can be chosen freely67. Specifically bound RNA variants cluster in the high‑affinity region 
of the distribution and produce a binding consensus sequence (motif), shown as a logo 
underneath the plot. The remainder of the distribution consists of nonspecific RNA 
variants, which do not produce a consensus motif. [Au: perhaps explain the 
lowest-affinity logo here too?]
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Decision tree-guided 
approaches
Any of a family of statistical 
classifying methods for sorting 
data according to attributes 
(for example, nodes) that form 
a hierarchy encoded as a tree.

Higher-order Bayesian 
networks
A type of statistical model that 
represents a set of random 
variables and their conditional 
dependencies expressing the 
quantitative strength of the 
connections between variables.

Equilibrium binding affinity
A quantitative description of 
the energetic strength of the 
interaction between two 
molecules, typically expressed 
by the dissociation constant, Kd.

Association rate constants
The second-order rate 
constants, with unit Mol−1s−1, 
that describe the binding 
(association) of two molecules 
in solution.

Dissociation rate constants
The first-order rate constants, 
with unit s−1, that describe the 
dissociation of a complex 
between two molecules in 
solution.

constants and dissociation rate constants for the substrate 
variants. To date, few studies have reported rate con-
stants for many substrates67,91, and to our knowledge only 
one91 reported both association and dissociation rate 
constants — for the binding of the bacteriophage MS2 
coat protein to a large set of variants of the cognate RNA 
hairpin91. In this study, differences in substrate prefer-
ences were mainly due to variations in substrate associa-
tion rate constants, with comparably small contributions 
by dissociation rate constants. These observations sug-
gest that, for the MS2–substrate system, differences in 
RNA binding are mainly due to variations in ground 
state energies, most probably reflecting the significance 
of RNA structure for substrate binding by MS2 (REF. 91).

Although comparable data for other RNA–protein 
interactions have not yet been reported, RNA structure 
is likely to affect even those proteins that bind to presum-
ably unstructured sites (FIG. 4b). A subset of a randomized 
substrate population will form at least transient second-
ary structures92,93, and the unfolding of even relatively 
unstable structures will affect the substrate’s ground state 
and thereby the overall affinity distribution. Although 

it is known that sequestration of protein‑binding sites 
by RNA structures affects protein binding in vitro94 and 
in vivo95, it has not been explored to which degree more 
subtle changes in substrate ground state free energies 
contribute to binding specificity. The potential effect of 
even transient RNA structures on substrate specificity 
emphasizes the importance of the RNA sequences sur-
rounding protein‑binding sites.

Specific versus nonspecific interactions
As noted above, affinity distributions of RBPs measured 
in vitro and RNA‑binding patterns of numerous RBPs 
measured in cells have raised questions regarding the 
widely used classification of RBPs as either specific or 
nonspecific. A more nuanced, quantitative view on spec-
ificity and nonspecificity is emerging, based on recent 
technical advances in measuring RNA–protein binding 
in vitro (BOX 1).

Specific versus nonspecific RBPs. The majority of studies 
on RNA–protein interactions have focused on specific 
RBPs, even though nonspecific proteins are numerous 

Figure 3 | RBP binding models.  a | Position weight matrix (PWM). The structure denotes a hypothetical RNA‑binding 
protein (RBP) RNA‑binding site comprised of six nucleotides. The plot (coloured circles) depicts the score (linear 
coefficient) for each base at each position. The score is calculated from affinity distributions such as the one shown in 
FIG. 2b. The score for each base corresponds to the contribution of the indicated nucleotide at each position to the overall 
binding free energy (a higher the score indicates tighter binding). b | A binding model considering interactions between 
two bases (pairwise interaction matrix (PIM) or dinucleotide weight matrix (DWM)). The structure denotes a hypothetical 
RBP RNA‑binding site with six nucleotides; lines show the possible pairwise (energetic) couplings between two 
nucleotides. Coloured fields correspond to the score for each of the 16 pairwise nucleotide permutations at each two 
positions. Scores are calculated from affinity distributions such as that shown in FIG. 2b. A yellow field (denoting a high 
score) indicates that a given dinucleotide combination promotes binding (that is, increases the overall PWM score). A blue 
field (denoting a low score) indicates inhibition of binding by a given dinucleotide combination. A black field indicates no 
significant contribution either way. Figure, part b, [Au: which part of panel b?] from REF. 67, Nature Publishing Group.
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A‑form helix
A right-handed double helix 
formed by nucleic acids, 
primarily RNA, with 
characteristic numbers of base 
pairs per turn, a deep major 
groove and a shallow minor 
groove.

Maximal specificity
An optimal mode of molecular 
recognition resulting in the 
largest difference in binding 
free energy between cognate 
and non-cognate ligands.

and perform many important biological functions. A 
recent study determined the affinity distribution for a 
nonspecific E. coli protein, the C5 subunit of RNase P67. 
C5 binds, in conjunction with the catalytic RNA unit of 
RNase P, to all cellular tRNA precursors at a degenerate 
binding site67,96,97. Despite the lack of a consensus binding 
motif in its physiological substrates, the affinity distribu-
tion for C5 was extremely similar to those seen for highly 
specific proteins67. As in the case of specific RBPs, [Au: 
ok?] the high-affinity region of the affinity distribution 
of C5 revealed a consensus sequence, indicating that 
C5 is inherently specific towards certain sequences. In 
contrast to specific RBPs, the physiological substrates of 
C5 do not fall in the high-affinity region of the distribu-
tion but in the median region, which does not have a 
consensus, and in which large differences in sequence 
have only small effects on affinity (FIG. 2b). Defined bind-
ing models could be readily derived from the C5 affin-
ity distribution67, suggesting that the differences between 
specific and nonspecific RBPs are not inherent features 
of the proteins. Rather, specific and nonspecific binding 
modes represent different parts of the affinity distribu-
tion (FIG. 2b).

It is perhaps not surprising that even nonspecific 
RBPs have intrinsic specificity, given that protein and 
RNA surfaces at the binding interface have irregular 
features. Some RNA species are thus more likely to 
form favourable interactions with a protein than oth-
ers. This notion probably applies to the vast majority of 

RNA–protein interactions. A possible exception is pro-
teins that bind exclusively to the backbone of an RNA 
A‑form helix, because the backbone of an A‑form RNA 
helix is thought to be structurally similar for diverse 
sequences98,99. Yet, helices dynamically open and close 
locally in a sequence-dependent manner98,100, and they 
may be distorted on protein binding, as seen for dou-
ble‑stranded RBD–RNA complexes101.

The kinetic context of RNA–protein interactions. The 
RNA‑binding study of C5 also highlighted the signifi-
cance of the context in which a binding reaction occurs. 
One critical and perhaps obvious aspect for this context 
is the availability of substrates in the transcriptome. For 
C5, most of the tightest binding sequence variants are 
not present in the expressed substrates. RNA structure 
also plays an important part in the context of a binding 
reaction, as discussed above (FIG. 4b).

A third, potentially highly significant, factor is the 
kinetic context — the kinetics of the reactions that pre-
cede and follow the binding step (FIG. 4c). This kinetic 
context is dictated by the concentration of the protein, by 
the concentration of the RNA, by the rate constants for 
substrate binding and dissociation, and by how these rate 
constants compare with those of the steps that precede 
and follow the binding step. The intrinsic specificity of 
the protein for any given RNA substrate is given by the 
ratio of rate constants for substrate binding and disso-
ciation (FIG. 4a). However, intrinsic specificity translates 

Figure 4 | Free energy landscapes of RNA–protein interactions.  a | The free energy landscape for a single step of a 
reversible binding reaction between a protein and two RNA variants is shown. The different binding affinities of sequence 
variants are reflected in different equilibrium free energy changes (ΔG°Equilibrium). Different equilibrium binding affinities can 
result from differences in ground-state, transition-state (TS) or product-state free energies, which correspond to changes 
in activation free energy for association (ΔG‡Association), dissociation (ΔG‡Dissociation) or both. [Au: for simplicity should the 
unfolded RNA be the same way up in parts a, b and c (and in complex)?] b | Free energy landscape of a binding 
reaction between a protein and a structured RNA. Only one RNA variant is shown for simplicity. In this example, the 
hairpin RNA binds in its unfolded state; however, the depicted process also applies to structural transitions that are more 
complex than hairpin unfolding. The unfolding step affects the equilibrium free energy change (ΔG°), and thus the binding 
affinity. c | The kinetic context of an RNA–protein binding reaction. Only one RNA variant is shown for simplicity. The 
scheme shows ground state and TS for three consecutive reactions. Protein–RNA binding is the middle step. Intrinsic 
specificity can translate into biological specificity only for the scenario indicated by the red coloured transitions state 
energies for reaction A (rate constant k

A
) and C (rate constant k

C
). [Au: bottom of part c, should there be a plus sign 

between the protein and unfolded RNA?] All other combinations of transition state energies reduce the intrinsic 
specificity that is provided by the isolated binding reaction. k

diss
, rate of dissociation; k

on
, rate of association. [Au: are these 

definitions correct? but why is it kon but not koff?] [Au: please ensure that single-letter variables are in italics, 
otherwise in roman]
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into near-maximal specificity only if [Au: OK? (moved 
‘only’)] the step preceding the binding is fast compared 
with the binding step and the step following the binding 
step is slow compared with both binding and dissocia-
tion. All other scenarios neutralize intrinsic specificity to 
various degrees (FIG. 4c). Therefore, an inherently highly 
specific protein can readily operate under an entirely 
nonspecific regime, or a protein can be toggled between 
nonspecific and specific modes, solely through changes 
in the rate constants of steps unrelated to binding or 
through changes in RNA or protein concentrations. The 
kinetic context is dictated by proteins that may or may 
not directly interact with the RBP in question. Although 
we are not aware of studies that have explicitly tested the 
kinetic context for RBPs, this context is likely to contrib-
ute to the wide range of binding sites seen during the 
transcriptome-wide mapping of RNA‑binding sites for 
many proteins.

Given the significance and the ubiquity of the kinetic 
context, we believe it is useful to distinguish between 
the biological specificity and the intrinsic specificity 
of a protein towards substrate variants. The biological 
specificity is the preference of a protein for sequence 
variants in vivo, as revealed by techniques like CLIP. The 
intrinsic specificity, reflected in the affinity distribution, 
is the preference of a protein for sequence variants when 
only the binding reaction is examined in vitro. Intrinsic 
specificity is equivalent to the classical definition of 
specificity for enzymatic reactions: FSpecificity = (kcat/Km)
Substrate1/(kcat/Km)Substrate2, where FSpecificity [Au: please check 
all single-letter variables are in italics, otherwise in 
roman] refers to the factor by which the enzyme prefers 
substrate 1 over substrate 2, kcat to the turnover number 
and Km to the Michaelis constant102. An obvious chal-
lenge is to quantitatively define the connection between 
intrinsic specificity and biological specificity for RBPs. 
The first attempts in this direction have integrated 
in vivo and in vitro specificity measurements, which 
aided the identification of cellular regulatory protein-
binding sites from CLIP data103,104. In addition, matching 
of preferred in vitro binding motifs for RBPs with CLIP 
data is a mark of progress towards integrating in vitro 
and in vivo data69.

Modulating intrinsic specificity of RBPs. In many RBPs, 
the intrinsic specificity of individual RBDs seems to 
be insufficient to accomplish the biologically required 
specificity of the RBP3,22,23,105. Mechanisms have therefore 
evolved that enhance the intrinsic specificity of RBPs to 
better discriminate between cognate and non-cognate 
binding sites. Conversely, proteins that need to inter-
act with diverse RNA sites in an indiscriminate fashion 
must use mechanisms to compensate for the unavoidable 
intrinsic specificities of their RBDs.

Intrinsic specificity of an RBD can be enhanced by 
increasing the size of the RNA‑binding site, to recognize 
more nucleotides. A larger RBD binding site is expected 
to bind the target variant tighter than a small site would, 
but a larger binding site can also bind non-target vari-
ants tighter, and the discrimination between target and 
non-target sites will not necessarily increase106 (FIG. 5a). 

However, discrimination between target and non-target 
sites depends on whether additional nucleotides contrib-
ute independently to overall affinity. Independent contri-
butions of nucleotides result in only modest increases of 
discrimination with increasing binding site size (FIG. 5a). 
By contrast, energetic coupling between nucleotides can 
result in large increases in selectivity (FIG. 5b). An increase 
in binding site size that is thought to lead to enhanced 
specificity is seen for RRMs24,107, in which changes in 
binding site size are accomplished through the use of 
alternative RNA‑binding modes by the core RRM fold24.

A widely observed mechanism that affects the intrin-
sic specificity of RBPs is the inclusion of multiple RBDs 
in a single protein (FIG. 4c). As noted, a large fraction of 
the proteins that interact with RNA contain multiple 
RBDs1,22,23. This modular architecture results in proteins 
with affinity distributions that combine the affinity 
distributions of their individual RBDs (FIG. 5c). These 
combinations can enhance binding specificity if the 
affinity distributions of the different RBDs favour simi-
lar sequence variants or if they favour different sequence 
variants in a non-compensatory fashion. Modular pro-
tein architectures can also enable proteins to recognize 
non-contiguous sequences23 and thus intervening RNA 
sequences can become important contributors to speci-
ficity108–110. In addition, protein regions that link different 
RBDs can modulate the contribution of each RBD to the 
protein’s overall RNA affinity and even promote coop-
erativity between RBDs111. Multiple RBDs with differ-
ent inherent affinity distributions can also compensate 
for each other in a given protein and lead to uniform 
binding of an RBP to a wide range of diverse substrates 
(FIG. 5c). This is seen for EF‑Tu, which binds to all charged 
tRNAs with similar affinity112. EF‑Tu contains a binding 
site for the tRNA and one for the cognate amino acid113. 
The binding energies for tRNAs and amino acids at each 
site differ, but they compensate for their respective dif-
ferences, thereby resulting in nearly uniform binding for 
all correctly charged tRNAs112.

Multiple RBDs do not necessarily need to be part 
of the same protein; they can be encoded by different, 
yet interacting, proteins (FIG. 5c). This is widely seen in 
RNPs114–116, including large RNA–protein assemblies 
such as the spliceosome117–121 or the eukaryotic trans-
lation initiation machinery122–124. Moreover, multiple 
modular RBDs can assemble on the same RNA substrate, 
further increasing selectivity23. An advantage of combin-
ing different proteins for binding to a given RNA site is 
the possibility of regulating their interactions through 
variations in the concentration and post-translational 
modifications of the individual proteins46. Different 
proteins can bind cooperatively or anti-cooperatively, 
[Au: is there another term that means anti-coopera-
tively (or is it possible to put a few words in brackets 
for total clarity for any non-specialist readers)?] and 
these modes of protein–protein interactions can further 
amplify intrinsic specificity or provide compensation 
for the intrinsic specificity of individual RBDs. Multiple 
identical RBDs can also assemble in homo-oligomers 
of RNA-interacting proteins70 and can thereby enhance 
selectivity for longer target sites110,125.
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Future perspective
High-throughput sequencing methods have opened 
new possibilities to measure and understand specificity 
and nonspecificity in RNA–protein interactions, both 
in vitro and in vivo. It is now possible to directly deter-
mine affinities for all, or at least for a large number of, 
possible binding site sequence variants for most RBDs 
in vitro, and to derive comprehensive binding mod-
els. These new tools have already provided important 
insight into principles that underlie binding specificity 
and nonspecificity. Although not all of these techniques 
can yet be readily applied in every laboratory, it is likely 
that binding models will emerge for many more RBDs 
and RBPs over the next years.

Future challenges include the integration of quan-
titative binding models with structural data. To date, 

most structures of RBPs have been solved with only 
a single RNA substrate, usually representing a high-
affinity target; only in very few cases do structures exist 
for low‑affinity targets70 or alternative substrates126. 
Yet these data, combined with comprehensive binding 
models, will be the most instructive for linking structure 
and intrinsic specificity126. It will be equally important 
to determine binding models for proteins with mutated 
RBDs and, if possible, to integrate structural and binding 
models for such mutant proteins. Comparisons of bind-
ing models for wild-type and mutated proteins might 
also be an inroad to understanding the virtually unex-
plored effects of transient RNA structure and kinetic 
context on RNA–protein interactions in the cell.

Ultimately, we want to devise models that accurately 
describe and possibly predict the RNA-binding patterns 

Figure 5 | Mechanisms to increase or decrease the intrinsic specificity of RBPs.  a | Increases in the size of the 
RNA‑binding site of an RNA‑binding protein (RBP), with additive contributions to the binding energy being made by the 
additionally bound nucleotides. Extra nucleotides (nt) in the binding site shift the affinity distribution towards higher 
affinities but do not significantly broaden the distribution and thus do not lead to large increases in the inherent 
specificity of the RBP. b | Increases in the size of the RNA‑binding site of an RBP, with contributions of pairwise energetic 
coupling to the binding energy being made by the additionally bound nucleotides. Extra nucleotides in the binding site 
shift the affinity distribution towards higher affinities and broaden the distribution, thus increasing the inherent specificity 
of the RBP. c | Increases or decreases in the intrinsic specificity of an RBP through the use of multiple RNA‑binding domains 
(RBDs). Multiple RBDs (RBD1 and RBD2) can be part of the same protein or separate proteins. The panels in the first and 
second rows show ranked affinity distributions (according to the same sequences for both RBDs) for each RBD. The panels 
in the third row show the ranked affinity distribution of the combination of both RBDs; the corresponding affinity 
distribution is shown in the fourth row and colour coded as indicated. Inherent protein specificity can be increased by the 
additive specificities of the additional RBD or decreased by compensatory specificities. Intrinsic specificities for individual 
RBDs can vary. Binding preferences of individual RBDs do not need to be strictly additive, but can be synergistic, either 
through interactions between the RBDs or through cooperative binding of multiple proteins. [Au: should N be in italics 
(x9) and should ‘1’ and ‘N’ be present in the bottom row graphs in part c?]
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Online summary
•	 Mammalian cells encode tens of thousands of RNA species and 

more than 1,000 proteins that interact with them. Many of these 
proteins can bind to multiple RNAs, and any given RNA can inter-
act with many proteins, giving rise to highly complex networks of 
cellular RNA–protein interactions.

•	 New approaches based on high-throughput sequencing technolo-
gies have been developed to quantitatively measure the interaction 
of proteins simultaneously with large numbers of RNAs.

•	 These approaches have revealed that specificity in RNA–pro-
tein interactions represents a continuum from low‑affinity to 
high‑affinity RNA substrate variants. This continuum is quan-
titatively described by affinity distributions and comprehensive 
binding models.

•	 Affinity distributions for RNA‑binding proteins (RBPs) that are 
considered specific RNA binders do not differ fundamentally from 
affinity distributions for nonspecific RBPs, indicating that even 
the latter have inherent binding specificity. However, physiological 
targets of specific proteins fall into the high‑affinity range of the 
affinity distribution, whereas physiological targets of nonspecific 
proteins do not.

•	 The biological specificity of RBPs is affected by RNA structure, 
other proteins, RNA and protein concentrations, and the kinetics 
of reactions that precede or follow the RNA–protein binding steps.

•	 Mechanisms have evolved to amplify or compensate for inherent 
specificities of RNA‑binding domains. These include changes in 
the size of the RNA‑binding site of proteins, the combination of 
multiple RNA‑binding domains in a single RBP and the coordi-
nated binding of multiple RBPs.
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