Efficient Synthesis of [2′-18O]Uridine and Its Incorporation into Oligonucleotides: A New Tool for Mechanistic Study of Nucleotidyl Transfer Reactions by Isotope Effect Analysis

Qing Dai,† John K. Frederiksen,† Vernon E. Anderson,§ Michael E. Harris,*,†,‡ and Joseph A. Piccirilli*†,‡,§

Department of Biochemistry & Molecular Biology, Department of Chemistry, and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, and Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Received August 8, 2007

Incorporation into Oligonucleotides: A New Tool for Mechanistic Study of Nucleotidyl Transfer Reactions by Isotope Effect Analysis

Qing Dai,† John K. Frederiksen,† Vernon E. Anderson,§ Michael E. Harris,*,†,‡ and Joseph A. Piccirilli*†,‡,§

Department of Biochemistry & Molecular Biology, Department of Chemistry, and Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, MC 1028, Chicago, Illinois 60637, and Department of Biochemistry and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106

Lack of sufficient quantities of isotopically labeled materials has precluded the use of heavy atom isotope effects to investigate mechanisms of nucleotidyl transfer reactions in nucleic acids. Here we achieve regioselective opening of 2,2′-cyclouridine with [18O]benzoic acid/potassium hydride, allowing an efficient “one-pot” synthesis of [2′-18O]uridine in 88% yield. Conversion to the corresponding phosphorothioate or phosphorothiolates allows an efficient “one-pot” synthesis of [2′-18O]uridine, which enables synthesis of RNA substrates for isotope effect analyses on protein and RNA enzymes that catalyze nucleophilic attack by the 2′-OH.

Commercially available 2,2′-cyclouridine (1) could provide direct access to [2′-18O]uridine (2) if an 18O-enriched oxygen nucleophile can be made to attack the ribose C-2′ regioselectively. Initial attempts were directed toward hydrolysis of 1 under alkaline conditions (1 N NaOH, MeOH, rt, overnight). Consistent with previous observations,6 the reaction gave only 1-(beta-D-arabinofuranosyl)uracil, indicating that hydroxide attacks exclusively at the ribose base C-2 position. Therefore, to gain access to 2 from 1, we sought to identify an oxygen nucleophile with altered regioselectivity.

Ueda has summarized the reactions of 2,2′-cyclouridine with various nucleophiles.8 Unfortunately, none of the reported examples (Table 1) can be used to synthesize [2′-18O]uridine (2). In general, reactions of 2,2′-cyclouridine with nucleophiles have two possible regiochemical outcomes: (1) attack at the 5′-O leaving group. In solution, this reaction is catalyzed by both acid and base, and both stepwise and concerted reaction mechanisms are observed.1 Despite significant effort, little direct experimental evidence exists that determines which specific mechanism is followed for enzyme-catalyzed RNA cleavage. The effect of isotopic substitution on chemical reaction kinetics and equilibria provides an especially powerful way to investigate enzymatic transition states and their active site interactions. Isotopic substitution represents the smallest possible chemical perturbation of a catalytic system but can nonetheless have important influences on chemical reactivity.2 Interpretation of these isotope effects on reactivity can provide essential information for defining chemical mechanism. For nucleotidyl transfer reactions, the nucleophile isotope effect on the attacking 2′-O in particular offers the opportunity to distinguish unambiguously between stepwise and concerted reaction mechanisms.

Technical challenges severely limit the use of isotope effects to study phosphoryl transferases enzymes that operate on nucleic acids. One such limitation involves access to nucleic acid substrates bearing the desired site-specific isotope enrichment. Here we describe an efficient synthesis of [2′,18O]uridine, which enables synthesis of RNA substrates for isotope effect analyses on protein and RNA enzymes that catalyze nucleophilic attack by the 2′-OH.

Few strategies exist for the synthesis of isotope-enriched nucleosides, particularly sugar isotopeomers.4 Previously, Pang et al. obtained [3′-18O]uridine in low yield via reversible hydration (HCl/H218O) of a 3′-ketouridine derivative followed by reduction and separation from the predominant xylene epimer.5 Recently, Wnuk et al. reported access to [3′-18O]-1-(beta-D-arabinofuranosyl)uracil through a six-step synthesis from 2,3′-cyclouridine involving a Fox thermal rearrangement as the key step.6 However, this strategy generated arabinoarabinofuranosyl derivatives and could not be used to prepare [2′-18O]uridine. Another strategy reported in the literature to prepare 18O-labeled sugar isotopeomers makes use of 2-N2-substituted reaction of triflate with 18O-labeled nucleophiles.7 Unfortunately, the 2′-triflate derivative of uridine failed to undergo the analogous reaction to generate [2′-18O]uridine.

Commercially available 2,2′-cyclouridine (1) could provide direct access to [2′-18O]uridine (2) if an 18O-enriched oxygen nucleophile can be made to attack the ribose C-2′ regioselectively. Initial attempts were directed toward hydrolysis of 1 under alkaline conditions (1 N NaOH, MeOH, rt, overnight). Consistent with previous observations,6 the reaction gave only 1-(beta-D-arabinofuranosyl)uracil, indicating that hydroxide attacks exclusively at the ribose base C-2 position. Therefore, to gain access to 2 from 1, we sought to identify an oxygen nucleophile with altered regioselectivity.

Ueda has summarized the reactions of 2,2′-cyclouridine with various nucleophiles.8 Unfortunately, none of the reported examples (Table 1) can be used to synthesize [2′-18O]uridine (2). In general, reactions of 2,2′-cyclouridine with nucleophiles have two possible regiochemical outcomes: (1) attack at the

1. Department of Biochemistry & Molecular Biology, The University of Chicago.
2. Department of Chemistry, The University of Chicago.
3. Howard Hughes Medical Institute, The University of Chicago.
4. Department of Biochemistry, Case Western Reserve University.
5. Center for RNA Molecular Biology, Case Western Reserve University.

10.1021/jp0701727ccc: $40.75 © 2008 American Chemical Society
Published on Web 12/04/2007
SCHEME 1. The Two Modes of Nucleophilic Attack to 2,2′-Cyclouridine

favors ribose attack. They used this apparent empirical trend to guide our experiments. To favor nucleophilic attack at ribose, we sought to replace the hydrogen atoms of H2O with substituents that have larger pKa values.

Although in dimethylformamide (DMF) Mg(OMe)2 favors ribose attack to form 2′-O-methyluridine,11 we cannot access uridine readily from 2′-O-methyluridine because the methyl group is difficult to remove. We reasoned that sodium acetate (NaOAc) might favor ribose attack as an acetyl group withdraws electrons more strongly than a methyl group. Hydrolytic removal of the acetyl group from the resulting product would then allow facile access to uridine. The commercial availability of [18O2]-NaOAc makes this strategy especially attractive. We heated NaOAc with I in DMF at 140 °C for 24 h. TLC showed that uridine formed along with the regioisomer 1-(β-d-arabinofuranosyl)uracil in a ratio of 2:3 ribo/arabino. Using potassium acetate (KOAc) rather than NaOAc improved the ribo/arabino ratio to 3:2. Despite this partial success, the poor solubility of NaOAc and KOAc in DMF and the significant amount of byproduct from nucleobase attack (which in larger scale reactions proved difficult to separate from the desired uridine by column chromatography) led us to explore other alternatives.

To enhance solubility in DMF, we tested potassium benzoate (KOBz) as the nucleophile, hoping that the greater electron-withdrawing power23 of the benzoyl moiety (relative to acetyl moiety) might improve regioselectivity. We heated a mixture of 1 (1.0 equiv) and KOBz (1.0 equiv) in DMF at 140 °C and monitored the reaction by TLC. After 1 week, TLC revealed that little starting material remained, and that two major products and one minor product had formed. The major products corresponded to uridine and 2′-O-benzoyluridine. The minor product co-migrated with 1-(β-d-arabinofuranosyl)uracil and presumably forms via benzoate attack on the nucleobase. After treating the crude reaction mixture with NaOAc/MeOH to

TABLE 1. Reaction of 2,2′-Cyclouridine with Various Nucleophiles

<table>
<thead>
<tr>
<th>entry</th>
<th>nucleophile</th>
<th>solvent</th>
<th>T (°C)</th>
<th>time (h)</th>
<th>product</th>
<th>yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>NaOH</td>
<td>MeOH/H2O</td>
<td>rt</td>
<td>16</td>
<td>arabino</td>
<td>69</td>
</tr>
<tr>
<td>2b</td>
<td>Mg(OMe)2</td>
<td>MeOH</td>
<td>65</td>
<td>5</td>
<td>ribo</td>
<td>92</td>
</tr>
<tr>
<td>3c</td>
<td>B(OMe)3</td>
<td>MeOH+CH(OOMe)3</td>
<td>150</td>
<td>42</td>
<td>ribo</td>
<td>86</td>
</tr>
<tr>
<td>4d</td>
<td>NH3</td>
<td>MeOH</td>
<td>37</td>
<td>48–168</td>
<td>arabino</td>
<td>16</td>
</tr>
<tr>
<td>5e</td>
<td>NaH2PONbOH</td>
<td>HMPA</td>
<td>150</td>
<td><1</td>
<td>ribo</td>
<td>65</td>
</tr>
<tr>
<td>6f</td>
<td>H2S+EtSH</td>
<td>DMF</td>
<td>20</td>
<td>120</td>
<td>arabino</td>
<td>70</td>
</tr>
<tr>
<td>7g</td>
<td>EtSH+reagent 1b</td>
<td>DMF</td>
<td>60</td>
<td>12</td>
<td>ribo</td>
<td>93</td>
</tr>
<tr>
<td>8h</td>
<td>tert-BuSH+reagent 1b</td>
<td>DMF</td>
<td>100</td>
<td>16</td>
<td>ribo</td>
<td>94</td>
</tr>
<tr>
<td>9i</td>
<td>AcSH</td>
<td>dioxane</td>
<td>110</td>
<td>6</td>
<td>ribo</td>
<td>65</td>
</tr>
<tr>
<td>10j</td>
<td>PhSe−SePh+NaBH4</td>
<td>EtOH</td>
<td>78</td>
<td>1</td>
<td>ribo</td>
<td>90</td>
</tr>
<tr>
<td>11k</td>
<td>HF</td>
<td>dioxane</td>
<td>100–110</td>
<td>18</td>
<td>ribo</td>
<td>90–50</td>
</tr>
<tr>
<td>12l</td>
<td>HCl</td>
<td>dioxane</td>
<td>75–80</td>
<td>18</td>
<td>ribo</td>
<td>89</td>
</tr>
<tr>
<td>13m</td>
<td>LiBr</td>
<td>dioxane</td>
<td>60</td>
<td>6</td>
<td>ribo</td>
<td>98</td>
</tr>
<tr>
<td>14n</td>
<td>NaH+TsOH·H2O</td>
<td>aceton</td>
<td>50</td>
<td>2.5</td>
<td>ribo</td>
<td>98</td>
</tr>
</tbody>
</table>

a Yields are for pure ribo and arabino product. b Reagent 1: N,N,N′,N′-tetramethylguanidine.

(23) Benzoic acid (BrOH, pKa = 4.2) is a stronger acid than acetic acid (pKa = 4.8).
convert 2′-O-benzoyluridine to uridine, the 1H NMR spectrum indicated that uridine and 1-(β-d-arabinofuranosyl)uracil formed in a 5:1 ratio.

Using 2 equiv of KO\textsubscript{Bz} instead of 1 equiv had little effect on the reaction rate or the ratio of the ribo/arabinos products. However, we found that the presence of benzoic acid accelerated the reaction and improved regioselectivity further.24 A mixture of BzOH (1.0 equiv) and KO\textsubscript{Bz} (1.0 equiv) at 140 °C in DMF consumes 1 completely within 48 h to give the products in a ratio of 20:1 ribo/arabinos.25 The increased reaction rate and regioselectivity upon addition of benzoic acid may reflect acid catalysis, in which protonation of the imino nitrogen alters the “chemical context” of the nucleophilic atom.

In conclusion, regiochemistry of nucleophilic reactions with 2,2′-cyclouridine appears to be influenced by the chemical context of the nucleophilic atom and the presence of acid. Using these hypotheses as a guide, we developed reaction conditions in which an oxygen nucleophile (potassium benzoate in the presence of benzoic acid) favors ribose attack over nucleobase attack by 20-fold. This regioselectivity allows for efficient synthesis of 2′-[18O]\textsubscript{2}uridine and its phosphoramidite from 2,2′- cyclouridine and [18O\textsubscript{2}]benzoic acid. This approach may also be applied for converting the 2,3′-cyclouridine to [3′-18O]\textsubscript{2}uridine. We can now construct RNA substrates containing [2′-18O\textsubscript{2}]uridine isotope isologues, thereby enabling isotope effect analyses of protein and RNA enzymes that catalyze 2′-O-transphosphorylation reactions. Through known transformations of uridine,28 we may also access [2′-18O\textsubscript{2}] isotope-enriched cytidine, adenosine, and guanosine.

Experimental Section

\[2′-\text{18O}\textsubscript{2}]Uridine (2): To a pressure tube (35 mL) under argon were added anhydrous DMF (20 mL), KH (35%, 457 mg, 4 mmol), and [18O\textsubscript{2}]benzoic acid (1.01 g, 8 mmol, 2 equiv). After the reaction was stirred for 10 min at rt, 2,2′-cyclouridine (904 mg, 4 mmol, 1 equiv) was added. The mixture was heated to 140 °C for 4 days. The reaction mixture was concentrated to dryness under vacuum. The residue was dissolved in methanol (20 mL), and sodium methoxide in methanol (30%, 1.52 mL, 2 equiv) was added. The mixture was stirred overnight at rt, and acetic acid (690 μL, 3 equiv) was added. The mixture was stirred at rt for an additional 10 min and concentrated to dryness under vacuum. The residue was purified by silica gel chromatography, eluting with 10% methanol in ethyl acetate, to give 2 (859 mg, 88%) as a white solid: 1H NMR (500 MHz, DMSO-\textsubscript{d\textsubscript{6}}) δ 11.30 (br, 1H), 7.88 (d, J = 8.2 Hz, 1H), 5.78 (m, 1H), 5.65 (d, J = 8.2 Hz, 1H), 5.36 (br, 1H), 5.07 (br, 2H), 4.01 (m, 1H), 3.95 (m, 1H), 3.83 (m, 1H), 3.60 (m, 1H), 3.55 (m, 1H), 3.40 (m, 1H), 3.37 (m, 1H), 3.05 (m, 1H), 1.1); 13C NMR (125.8 Hz, DMSO-\textsubscript{d\textsubscript{6}}) δ 163.5, 151.1, 141.1, 102.1, 88.0, 85.2, 73.9, 70.2, 62.1; HRMS calcld for C\textsubscript{9}H\textsubscript{12}N\textsubscript{2}O\textsubscript{5}\textsuperscript{18O\textsubscript{2}}, [MH++] 247.0816, found 247.0818.

Acknowledgment

Q.D. is a Research Assistant Professor at the University of Chicago, and J.A.P. is an Investigator of the Howard Hughes Medical Institute. We thank the following members of the Picirilli laboratory for critical comments on the manuscript: C. Lea, R. Fong, T. Novak, R. Sengupta, K. Sundaram, J. Ye, Dr. N.-S. Li, Dr. J. Lu, Y. Koldobskaya, S. Koo, and J. Min. We also thank Dr. N.-S. Li for oligo synthesis.

Supporting Information Available: A scheme and experimental details for synthesis of phosphoramidite 3; \(1^H\) and \(1^3C\) NMR spectra for compounds 2 and 3. This material is available free of charge via the Internet at http://pubs.acs.org.

\(\text{JOCNote} 701727H\)

\(\text{JOC} 73(1), 311\)